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Existing theoretical analyses of Faraday waves in Hele-Shaw cells rely on the Darcy9
approximation and assume a parabolic flow profile in the narrow direction. However, Darcy’s10
model is known to be inaccurate when convective or unsteady inertial effects are important. In11
this work, we propose a gap-averaged Floquet theory accounting for inertial effects induced12
by the unsteady terms in the Navier-Stokes equations, a scenario that corresponds to a13
pulsatile flow where the fluid motion reduces to a two-dimensional oscillating Poiseuille14
flow, similarly to the Womersley flow in arteries. When gap-averaging the linearised Navier-15
Stokes equation, this results in a modified damping coefficient, which is a function of the ratio16
between the Stokes boundary layer thickness and the cell’s gap, and whose complex value17
depends on the frequency of the wave response specific to each unstable parametric region.18
We first revisit the standard case of horizontally infinite rectangular Hele-Shaw cells by also19
accounting for a dynamic contact angle model. A comparison with existing experiments20
shows the predictive improvement brought by the present theory and points out how the21
standard gap-averaged model often underestimates the Faraday threshold. The analysis is22
then extended to the less conventional case of thin annuli. A series of dedicated experiments23
for this configuration highlights how Darcy’s thin-gap approximation overlooks a frequency24
detuning that is essential to correctly predict the locations of the Faraday tongues in the25
frequency-amplitude parameter plane. These findings are well rationalised and captured by26
the present model.27

1. Introduction28

Recent Hele-Shaw cell experiments have enriched the knowledge of Faraday waves (Faraday29
1831). Researchers have uncovered a new type of highly localised standing waves, referred to30
as oscillons, that are both steep and solitary-like in nature (Rajchenbach et al. 2011). These31
findings have spurred further experimentations with Hele-Shaw cells filled with one or more32
liquid layers, using a variety of fluids, ranging from silicone oil and water-ethanol mixtures to33
pure ethanol (Li et al. 2018b). Through these experiments, new combined patterns produced34
by triadic interactions of oscillons were discovered by Li et al. (2014). Additionally, another35
new family of waves was observed in a cell filled solely with pure ethanol and at extremely36
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shallow liquid depths (Li et al. 2015, 2016).37
All these findings contribute to the understanding of the wave behaviour in Hele-Shaw38

configurations and call for a reliable stability theory that can explain and predict the instability39
onset for the emergence of initial wave patterns.40
Notwithstanding two-dimensional direct numerical simulations (Périnet et al. 2016; Ubal41

et al. 2003) have been able to qualitatively replicate standing wave patterns reminiscent of42
those observed in experiments (Li et al. 2014), these simulations overlook the impact of43
wall attenuation, hence resulting in a simplified model that cannot accurately predict the44
instability regions (Benjamin & Ursell 1954; Kumar & Tuckerman 1994) and is therefore45
not suitable for modelling Hele-Shaw flows. On the other hand, attempting to conduct three-46
dimensional simulations of fluid motions in a Hele-Shaw cell poses a major challenge due to47
the high computational cost associated with the narrow dimension of the cell, which requires48
a smaller grid cell size to capture the shear dissipation accurately. Consequently, the cost of49
performing such simulations increases rapidly as the cell gap narrows.50
In order to tackle the challenges associated with resolving fluid dynamics within such51

systems, researchers have utilised Darcy’s law as an approach to treating the confined fluid52
between two vertical walls. This approximation, also used in the context of porous media,53
considers the fluid to be flowing through a porous medium, resulting in a steady parabolic54
flow in the short dimension. When gap-averaging the linearised Navier-Stokes equation, this55
approximation translates into a damping coefficient σ that scales as 12ν/b2, with ν the fluid56
kinematic viscosity and b the cell’s gap-size, which represents the boundary layer dissipation57
at the lateral walls. However, Darcy’s model is known to be inaccurate when convective and58
unsteady inertial effects are not negligible, such as in waves (Kalogirou et al. 2016). It is59
challenging to reintroduce convective terms consistently into the gap-averaged Hele-Shaw60
equations from a mathematical standpoint (Ruyer-Quil 2001; Plouraboué & Hinch 2002;61
Luchini & Charru 2010).62
In their research, Li et al. (2018a) applied the Kelvin-Helmholtz-Darcy theory proposed63

by Gondret & Rabaud (1997) to reintroduce advection and derive the nonlinear gap-averaged64
Navier-Stokes equations. These equations were then implemented in the open-source code65
Gerris developed by Popinet (2003, 2009) to simulate Faraday waves in a Hele-Shaw cell.66
Although this gap-averaged model was compared to several experiments and demonstrated67
fairly good agreement, it should be noted that the surface tension term remains two-68
dimensional, as the out-of-plane interface shape is not directly taken into account. Recently,69
Rachik&Aniss (2023) have studied the effects of finite depth and surface tension on the linear70
and weakly nonlinear stability of the Faraday waves in Hele-Shaw cells, but the out-of-plane71
curvature was not retained. This simplified treatment neglects the contact line dynamics and72
may lead to miscalculations in certain situations. Advances in this direction were made by Li73
et al. (2019), who found that the out-of-plane capillary forces associated with the meniscus74
curvature across the thin-gap direction should be retained in order to improve the description75
of the wave dynamics, as experimental evidence suggests. By employing amore sophisticated76
model, coming from molecular kinetics theory (Blake 1993; Hamraoui et al. 2000; Blake77
2006) and similar to the macroscopic model introduced by Hocking (1987), they included78
the capillary contact line motion arising from the small scale of the gap-size between the two79
walls of a Hele-Shaw cell and they derived a novel dispersion relation, which indeed better80
predicts the observed instability onset.81
However, discrepancies in the instability thresholds were still found. This mismatch was82

tentatively attributed to factors that are not accounted for in the gap-averaged model, such83
as the extra dissipation on the lateral walls in the elongated direction. Of course, a lab-scale84
experiment using a rectangular cell cannot entirely replace an infinite-length model. Still, if85
the container is sufficiently long, this extra dissipation should be negligible. Other candidates86
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for the mismatch between theory and experiments were identified in the phenomenological87
contact line model or free surface contaminations.88
If these factors can certainly be sources of discrepancies, we believe that a pure hydrody-89

namic effect could be at the origin of the discordance between theory and experiments in the90
first place.91
Despite the use of the Darcy approximation is well-assessed in the literature, the choice92

of a steady Poiseuille flow profile as an ansatz to build the gap-averaged model appears93
in fundamental contrast with the unsteady nature of oscillatory Hele-Shaw flows, such as94
Faraday waves. At low enough oscillation frequencies or for sufficiently viscous fluids, the95
thickness of the oscillating Stokes boundary layer becomes comparable to the cell gap:96
the Stokes layers over the lateral solid faces of the cell merge and eventually invade the97
entire fluid bulk. The Poiseuille profile gives an adequate flow description in such scenarios,98
but this pre-requisite is rarely met in the above-cited experimental campaigns. It appears,99
thus, very natural to ask oneself whether a more appropriate description of the oscillating100
boundary layer impacts the prediction of stability boundaries. This study is precisely devoted101
to answering this question by proposing a revised gap-averaged Floquet analysis based on102
the classical Womersley-like solution for the pulsating flow in a channel (Womersley 1955;103
San & Staples 2012).104
Following the approach taken by Viola et al. (2017), we examine the impact of inertial105

effects on the instability threshold of Faraday waves in Hele-Shaw cells, with a focus on106
the unsteady term of the Navier-Stokes equations. This scenario corresponds to a pulsatile107
flow where the fluid’s motion reduces to a two-dimensional oscillating channel flow, which108
seems better suited than the steady Poiseuille profile to investigate the stability properties109
of the system. When gap-averaging the linearised Navier-Stokes equation, this results in a110
modified damping coefficient becoming a function of the ratio between the Stokes boundary111
layer thickness and the cell’s gap, and whose complex value will depend on the frequency of112
the wave response specific to each unstable parametric region.113
First, we consider the case of horizontally infinite rectangular Hele-Shaw cells by also114

accounting for the same dynamic contact angle model employed by Li et al. (2019) so as to115
quantify the predictive improvement brought by the present theory. A vis-à-vis comparison116
with experiments by Li et al. (2019) points out how the standard Darcy model often117
underestimates the Faraday threshold. In contrast, the present theory can explain and close118
the gap with these experiments.119
The analysis is then extended to the case of thin annuli. This less common configuration120

has already been used to investigate oscillatory phase modulation of parametrically forced121
surfacewaves (Douady et al. 1989) and drift instability of cellular patterns (Fauve et al. 1991).122
For our interest, an annular cell is convenient as it naturally filters out the extra dissipation123
that could take place on the lateral boundary layer in the elongated direction, hence allowing124
us to reduce the sources of extra uncontrolled dissipation and perform a cleaner comparison125
with experiments. Our homemade experiments for this configuration highlight how Darcy’s126
theory overlooks a frequency detuning that is essential to correctly predict the locations of127
the Faraday’s tongues in the frequency spectrum. These findings are well rationalised and128
captured by the present model.129
The paper is organised as follows. In §2, we revisit the classical case of horizontally infinite130

rectangular Hele-Shaw cells. The present model is compared with theoretical predictions131
from the standard Darcy theory and existing experiments. The case of thin annuli is then132
considered. The model for the latter unusual configuration is formulated in §3 and compared133
with homemade experiments in §4. Conclusions are outlined in §5.134
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Figure 1: (a) Sketch of Faraday waves in a rectangular Hele-Shaw cell of width b and
length l filled to a depth h with a liquid. Here b denotes the gap size of the Hele-Shaw cell,

l is the wavelength of a certain wave, such that b/l � 1, and θ is the dynamic contact
angle of the liquid on the lateral walls. The vessel undergoes a vertical sinusoidal

oscillation of amplitude a and angular frequency Ω. The free surface elevation is denoted
by η′ (x′). (b) Same as (a), but in an annular Hele-Shaw cell with internal and external

radii, respectively, R − b/2 and R + b/2. Here, b/R � 1 and the free surface elevation is a
function of the azimuthal coordinate ϕ′, i.e. η′ (ϕ′).

2. Horizontally infinite Hele-Shaw cells135

Let us begin by considering the case of a horizontally infinite Hele-Shaw cell of width b136
filled to a depth h with an incompressible fluid of density ρ, dynamic viscosity µ (kinematic137
viscosity ν = µ/ρ) and liquid-air surface tension γ (see also sketch in figure 1(a)). The vessel138
undergoes a vertical sinusoidal oscillation of amplitude a and angular frequency Ω. In a139
frame of reference which moves with the oscillating container, the free liquid interface is flat140
and stationary for small forcing amplitudes, and the oscillation is equivalent to a temporally141
modulated gravitational acceleration, G (t ′) = g − aΩ2 cosΩt ′. The equation of motion for142
the fluid bulk are143

ρ

(
∂U′

∂t ′
+ U′ · ∇′U′

)
= −∇′P′ + µ∇′2U′ − ρG (t) ez, ∇′ · U′ = 0. (2.1)144

Linearizing about the rest state U′ = 0 and P′ (z′, t ′) = −ρG (t ′) z′, the equations for the145
perturbation velocity, u′ (x ′, y′, z′, t ′) = {u′, v′,w′}T , and pressure, p′ (x ′, y′, z′, t ′), fields,146
associated with a certain perturbation’s wavelength l = 2π/k (k, wavenumber), read147

ρ
∂u′

∂t ′
= −∇′p′ + µ∇′2u′, ∇′ · u′ = 0. (2.2)148

Assuming that bk � 1, then the velocity along the narrow y′-dimension v′ � u′,w′ and,149
by employing the Hele-Shaw approximation as in, for instance, Viola et al. (2017), one can150
simplify the linearised Navier-Stokes equations as follows:151

∂u′

∂x ′
+
∂v′

∂y′
+
∂w′

∂z′
= 0, (2.3a)152
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ρ
∂u′

∂t ′
= −∂p′

∂x ′
+ µ

∂2u′

∂y′2
, ρ

∂w′

∂t ′
= −∂p′

∂z′
+ µ

∂2w′

∂y′2
,

∂p′

∂y′
= 0. (2.3b)153

Equations (2.3a)-(2.3b) are made dimensionless using k−1 for the directions x ′ and z′, and b154
for y′. The forcing amplitude and frequency provide a scale aΩ for the in-plane xz-velocity155
components, whereas the continuity equation imposes the transverse component v′ to scale156
as v′ ∼ bkaΩ � aΩ ∼ u′, due to the strong confinement in the y-direction (bk � 1). With157
these choices, dimensionless spatial scales, velocity components and pressure write:158

x = x ′k, y =
y′

b
, z = z′k, u =

u′

aΩ
, v =

v′

bkaΩ
, w =

w′

aΩ
, p =

kp′

ρaΩ2 , t = Ωt ′. (2.4)159

The first two equations in (2.3b) in non-dimensional form are160

∂u
∂t
= −∂p

∂x
+
δ2
St

2
∂2u
∂y2 ,

∂w

∂t
= −∂p

∂z
+
δ2
St

2
∂2w

∂y2 , (2.5)161

where δSt = δ′St/b and with δ′St =
√

2ν/Ω denoting the thickness of the oscillating Stokes162

boundary layer. The ratio
√

2/δSt is also commonly referred to as the Womersley number,163

Wo = b
√
Ω/ν (Womersley 1955; San & Staples 2012).164

2.1. Floquet analysis of the gap-averaged equations165

Given its periodic nature, the stability of the base flow, represented by a time-periodic166
modulation of the hydrostatic pressure, can be investigated via Floquet analysis.We, therefore,167
introduce the following Floquet ansatz (Kumar & Tuckerman 1994)168

u (x, y, z, t) = eµF t
+∞∑

n=−∞
ũn (x, y, z) ei(n+α/Ω)t = eµF t

+∞∑
n=−∞

ũn (x, y, z) eiξn t, (2.6a)169

170

p (x, z, t) = eµF t
+∞∑

n=−∞
p̃n (x, z) ei(n+α/Ω)t = eµF t

+∞∑
n=−∞

p̃n (x, z) eiξn t, (2.6b)171

where µF is the real part of the non-dimensional Floquet exponent and represents the growth172
rate of the perturbation. We have rewritten (n + α/Ω) = ξn to better explicit the parametric173
nature of the oscillation frequency of the wave response. In the following, we will focus on174
the condition for marginal stability (boundaries of the Faraday’s tongues), which requires175
a growth rate µF = 0. In addition, values of α = 0 and Ω/2 correspond, respectively, to176
harmonic and sub-harmonic parametric resonances (Kumar&Tuckerman1994). This implies177
that ξn is a parameter whose value is either n, for harmonics, or n + 1/2, for sub-harmonics,178
with n an integer n = 0,1,2, . . . specific to each Fourier component in (2.6a)-(2.6b).179
By injecting the ansatzs (2.6a)-(2.6b) in (2.5), we find that each component of the Fourier180

series must satisfy181

∀n : iξnũn = −∂ p̃n
∂x
+
δ2
St

2
∂2ũn
∂y2 , iξnw̃n = −∂ p̃n

∂z
+
δ2
St

2
∂2w̃n

∂y2 , (2.7)182

which, along with the no-slip condition at y = ±1/2, correspond to a two-dimensional183
pulsatile Poiseuille flow with solution184

ũn =
i
ξn

∂ p̃n
∂x

Fn (y) , w̃n =
i
ξn

∂ p̃n
∂z

Fn (y) , Fn (y) =
(
1 − cosh ((1 + i) y/δn)

cosh ((1 + i) /2δn)

)
, (2.8)185

and where δn = δSt/
√
ξn, is a rescaled Stokes boundary layer thickness specific to the nth186

Fourier component. The function Fn (y) is displayed in figure 2(b), which depicts how a187
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decrease in the value of δn starting from large values corresponds to a progressive transition188
from a fully developed flow profile to a plug flow connected to thin boundary layers.189
The gap-averaged velocity along the y-direction satisfies a Darcy-like equation,190

〈ũn〉 =
∫ 1/2

−1/2
ũn dy =

iβn
ξn
∇p̃n, βn = 1 − 2δn

1 + i
tanh

1 + i
2δn

. (2.9)191

To obtain a governing equation for the pressure p̃n, we average the continuity equation and192
we impose the impermeability condition for the spanwise velocity, v = 0 at y = ±1/2,193

∂〈ũn〉
∂x

+

∫ 1/2

−1/2

∂ṽn
∂y

dy
︸          ︷︷          ︸

ṽn(1/2)−ṽn(−1/2)=0

+
∂〈w̃n〉
∂z

= ∇ · 〈ũn〉 = 0, (2.10)194

Since 〈ũn〉 = i (βn/ξn) ∇p̃n, the pressure field p̃n must obey the Laplace equation195

∇2 p̃n =
∂2 p̃n
∂x2 +

∂2 p̃n
∂z2 = 0. (2.11)196

It is now useful to expand each Fourier component p̃n (x, z) in the infinite x-direction as sin x197
such that the y-average implies,198

p̃n (x, z) = p̂n (z) sin x, (2.12a)199
200

〈ũn〉 = iβn
ξn

p̂n cos x = ûn cos x, 〈w̃n〉 = iβn
ξn

∂ p̂n
∂z

sin x = ŵn sin x. (2.12b)201

Replacing (2.12a) in (2.11) leads to202 (
∂2

∂z2 − 1
)

p̂n = 0, (2.13)203

which admits the solution form204

p̂n = c1 cosh z + c2 sinh z. (2.14)205

The presence of a solid bottom imposes that ŵn = 0 and, therefore, that ∂ p̂n/∂z = 0, at a206
non-dimensional fluid depth z = −hk, hence giving207

p̂n = c1 [cosh z + tanh kh sinh z] . (2.15)208

Let us now invoke the kinematic boundary condition linearised around a flat static interface209

∂η

∂t
= w. (2.16)210

Note that the free surface elevation, η′ (x ′, y′, t ′), has been rescaled by the forcing amplitude a,211
i.e. η′/a = η, and represents the projection of the bottom of the transverse concave meniscus212
on the xz-plane of figure 1(a). Moreover, by recalling the Floquet ansatzs (2.6a)-(2.6b) (with213
µF = 0), here specified for the interface, we get an equation for each Fourier component n,214

η =

+∞∑
n=−∞

η̃neiξn t . (2.17)215

Expanding η̃n in the x-direction as sin x and averaging in y, i.e. 〈η̃n〉 = η̂n, leads to216

∀n : iξnη̂n = ŵn =
iβn
ξn

∂ p̂n
∂z

����
z=0
=

iβn
ξn

c1 tanh kh −→ c1 =
ξ2
n

βn

η̂n
tanh kh

. (2.18)217
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Lastly, we consider the dynamic equation (normal stress) linearised around a flat nominal218
interface and evaluated at z′ = 0,219

− p′ + ρG (t ′) η′ + 2µ
∂w′

∂z′
− γ

(
∂2η′

∂x ′2
+
∂2η′

∂y′2

)
= 0. (2.19)220

with the term in brackets in (2.19) that represents the first-order variation of the interface cur-221
vature. After turning to non-dimensional quantities using the scaling in (2.4), equations (2.19)222
reads223

−Ω2p + gkη − γ
ρ

k
∂2η

∂x2 −
γ

ρb2 k
∂2η

∂y2 =
aΩ2

g
gk η cos t, (2.20)224

where the viscous stress term has been neglected by analogy with Viola et al. (2017); Li225
et al. (2018a, 2019). Indeed, dimensional analysis suggests that such term scales as δ2

St k
2b2226

(with kb � 1), which is therefore negligible compared to the others as soon as δSt is of order227
∼ O (1) or smaller.228
The capillary force in the x-direction becomes important only at large enough wavenum-229

bers, although the associated term can be retained in the analysis so as to retrieve the well-230
known dispersion relation (Saffman & Taylor 1958; Chuoke et al. 1959; McLean & Saffman231
1981; Park & Homsy 1984; Schwartz 1986; Afkhami & Renardy 2013; Li et al. 2019). With232
the introduction of the Floquet ansatz (2.6b)-(2.17) and by recalling the x-expansion of the233
interface and pressure as sin x, the averaged normal stress equation becomes234

∀n : −Ω2 p̂n +
(
1 +

γ

ρg
k2

)
gkη̂n − γ

ρb2 k
∫ 1/2

−1/2

∂2η̃n

∂y2 dy =
aΩ2

2g
gk (η̂n−1 + η̂n+1) . (2.21)235

where the decomposition cosΩt ′ =
(
eiΩt

′
+ e−iΩt

′ ) /2 = (
eit + e−it

) /2 has also been used to236
decompose the right-hand side into the (n − 1)th and (n + 1)th harmonics.237

2.1.1. Treatment of the integral contact line term238

The treatment of the integral term hides several subtleties. Owing to the anti-symmetry of239
the first derivative of the interface at the two sidewalls, this term can be rewritten as240 ∫ 1/2

−1/2

∂2η̃n

∂y2 dy =
[
∂η̃n
∂y

]y=1/2

y=−1/2
= 2

∂η̃n
∂y

����
y=1/2

. (2.22)241

Linking the interface position η̃n(y) to the vertical velocity w̃n(y) given by (2.8) through the242

kinematic equation (2.16), and then taking their y-derivative in y = 1/2 to express ∂η̃n
∂y

���
y=1/2

243

seems the natural choice. However, this means assuming that the contact line remains pinned244
during the motion as w̃n satisfies the no-slip wall condition at y = ±1/2. Although the245
scenario of a pinned contact line dynamics (Benjamin & Scott 1979; Graham-Eagle 1983)246
is experimentally reproducible under controlled edge conditions (Henderson & Miles 1994;247
Howell et al. 2000; Bechhoefer et al. 1995; Shao et al. 2021a,b; Wilson et al. 2022), the most248
common experimental condition is that of a moving contact line (Benjamin & Ursell 1954;249
Henderson & Miles 1990; Batson et al. 2013; Li et al. 2015, 2016; Ward et al. 2019; Wilson250
et al. 2022; Li et al. 2019), which is not compatible with the no-slip condition satisfied by w̃n.251
One natural option would be to relax this no-slip condition by introducing a small slip region252
in the vicinity of the contact line, within which the flow quickly adapts from a no-slip to a slip253
condition (Miles 1990; Ting & Perlin 1995). Accounting for this slip region, where the fluid254
speed relative to the solid is proportional to the viscous stress through a spatially varying255
slip length, is hardly compatible with the presently proposed depth-averaged modelling.256
However, following Li et al. (2019); Hamraoui et al. (2000), it is possible to get inspiration257
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from the contact line literature and relate the slope ∂η̃n/∂y |y=1/2 to the gap-averaged contact258
line velocity 〈w̃n〉 in the averaged sense, drawing a phenomenological analogy with the259
contact line law referred to as linear Hocking’s model (Hocking 1987). To that purpose, the260
slope ∂η̃n/∂y |y=1/2 is first related to the dynamic contact angle θ (t) through the geometrical261
relation262

∂η′

∂y′

����
y′=b/2

= cot θ. (2.23)263

Assuming the static interface to be flat means taking the static contact angle θs equal to264
π/2. Linearization of (2.23) around θs = π/2 and substitution of the Floquet ansatz lead, in265
non-dimensional form, to266

∀n :
∂η̃n
∂y

����
y=1/2

= −b
a
θn, (2.24)267

with θn representing a small angle variation around θs associated with nth harmonic.268
Defining 〈Ca〉 = (µ/γ) 〈w′〉, we prescribe269

∀n : θn =
M
γ

aΩ〈w̃n〉 = a
M
γ
i (ξnΩ) η̂n. (2.25)270

The friction coefficient M , sometimes referred to as mobility parameter M (Xia & Steen271
2018), is here not interpreted in the framework of molecular kinetics theory (Voinov 1976;272
Hocking 1987; Blake 1993, 2006; Johansson & Hess 2018) but rather viewed as a constant273
phenomenological parameter that defines the energy dissipation rate per unit length of the274
contact line and, as in Li et al. (2019), we use the values proposed by Hamraoui et al. (2000).275
In Hocking’s model (Hocking 1987), adopting a value of M = 0 naturally means276

considering a contact line freely oscillating with a constant slope, while taking M = +∞277
simulates the case of a pinned contact line with fixed elevation. In contrast, in the present278
Hele-Shaw framework, the Capillary number can only be defined in terms of averaged279
interface velocity, so one cannot distinguish the contact line motion from the averaged280
interface evolution. As a result, the averaged model overlooks the free-to-pinned transition281
described by Hocking (1987) at large M , and somewhat paradoxically, the pinned regime282
cannot be described with this law.283

2.1.2. Modified damping coefficient284

Equations (2.15) and (2.18) are finally used to express the dynamic equation as a function of285
the non-dimensional averaged interface only,286

− (ξnΩ)
2

βn
η̂n+ i (ξnΩ) 2M

ρb
k tanh khη̂n+ (1 + Γ) gk tanh kh η̂n =

gk tanh kh
2

f (η̂n−1 + η̂n+1) ,
(2.26)287

with the auxiliary variables f = aΩ2/g and Γ = γk2/ρg, such that (1 + Γ) gk tanh kh = ω2
0,288

the well-known dispersion relation for capillary-gravity waves (Lamb 1993).289
As in the present form, the interpretation of coefficient βn does not appear straightforward,290

it is useful to define the damping coefficients291

σn = σBL + σCL, σBL = χn
ν

b2 , σCL =
2M
ρb

k tanh kh, (2.27a)292
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Figure 2: (a) Real and imaginary parts of the complex auxiliary coefficient χ = χr + iχi
versus twice the non-dimensional Stokes boundary layer thickness δ. The horizontal black

dotted line indicates the constant value 12 given by the Darcy approximation. (b)
Normalised profile F (y) (Womersley profile) for different δ = b−1√2ν/ξΩ, whose values
are specified by the filled circles in (a) with matching colours. The Poiseuille profile is
also reported for completeness. In drawing these figures, we let the oscillation frequency
of the wave, ξΩ, free to assume any value, but we recall that the parameter ξ can only

assume discrete values, and so do χ and F (y).

where χn is used to help rewriting 1
βn
= 1 − i δ2

n

2 χn,293

χn = i
2
δ2
n

(
1 − βn
βn

)
= 12

[
i

6δ2
n

( 2δn
1+i tanh 1+i

2δn

1 − 2δn
1+i tanh 1+i

2δn

)]
. (2.27b)294

These auxiliary definitions allows one to express (2.26) as295

− (ξnΩ)2 η̂n + i (ξnΩ)σnη̂n + ω
2
0η̂n =

ω2
0

2 (1 + Γ) f [η̂n+1 + η̂n−1)]. (2.28)296

or, equivalently,297

2 (1 + Γ)
ω2

0

[− (nΩ + α)2 + i (nΩ + α)σn + ω
2
0
]
η̂n = f [η̂n+1 + η̂n−1] . (2.29)298

Subscripts BL and CL in (2.27a) denote, respectively, the boundary layers and contact line299
contributions to the total damping coefficient σn.300

2.1.3. Results301

At the end of this mathematical derivation, a useful result is the modified damping coefficient302
σn. Since the boundary layer contribution, σBL depends on the nth Fourier component,303
the overall damping, σn, is mode dependent and its value is different for each specific304
nth parametric resonant tongue considered. This starkly contrasts with the standard Darcy305
approximation, where σBL is the same for each resonance and amounts to 12ν/b2. In our306
model, the case of α = 0 with n = 0 constitutes a peculiar case, as ξn = ξ0 = 0 and δ0 → +∞.307
In such a situation, F0 (y) tends to the steady Poiseuille profile so that we take χ0 = 12.308
Similarly to Kumar & Tuckerman (1994), equation (2.29) is rewritten as309

Anη̂n = f [η̂n+1 + η̂n−1] , (2.30)310
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with311

An =
2 (1 + Γ)
ω2

0

(
− (nΩ + α)2 + i (nΩ + α)σn + ω

2
0

)
= Ar

n + iAi
n ∈ C (2.31)312

The non-dimensional amplitude of the external forcing, f = aΩ2/g appears linearly,313
therefore (2.30) can be considered to be a generalized eigenvalue problem314

Aη̂ = f Bη̂, (2.32)315

with eigenvalues f and eigenvectors whose components are the real and imaginary parts of316
η̂n. See Kumar & Tuckerman (1994) for the structure of matrices A and B.317
For one frequency forcing we use a truncation number N = 10, which produces 2 (N + 1)×318

2 (N + 1) = 22×22matrices. Eigen-problem (2.32) is then solved inMatlab using the built-in319
function eigs and selecting several smallest, real positive values of f . For a fixed forcing320
frequency Ω and wavenumber k, the eigenvalue with the smallest real part will define321
the instability threshold. Further details about the numerical convergence as the truncation322
number N varies are given in Appendix A.323
Figure 3 shows the results of this procedure for one of the configurations considered by Li324

et al. (2019) and neglecting the dissipation associatedwith the contact linemotion, i.e. M = 0.325
In each panel, associated with a fixed forcing frequency, the black regions correspond to the326
unstable Faraday tongues computed usingσBL = 12ν/b2 as given by Darcy’s approximation,327
whereas the red regions are the unstable tongues computed with the modifiedσBL = χnν/b2.328
At a forcing frequency 4Hz, the first sub-harmonic tongues computed using the two models329
essentially overlap. Yet, successive resonances display an increasing departure from Darcy’s330
model due to the newly introduced complex coefficient σn. Particularly, the real part of χn331
is responsible for the higher onset acceleration, while the imaginary part is expected to act332
as a detuning term, which shifts the resonant wavenumbers k.333

2.2. Asymptotic approximations334

The main result of this analysis consists in the derivation of the modified damping coefficient335
σn = σn,r + iσn,i associated with each parametric resonance. Aiming at better elucidating336
how this modified complex damping influences the stability properties of the system, we337
would like to derive in this section an asymptotic approximation, valid in the limit of small338
forcing amplitudes, damping and detuning, of the first sub-harmonic (SH1) and harmonic339
(H1) Faraday tongues.340
Unfortunately, the dependence of σn on the parametric resonance considered and, more341

specifically, on the nth Fourier component, does not allow one to directly convert the gov-342
erning equations (2.28), expressed in a discrete frequency domain, back into the continuous343
temporal domain. By keeping this in mind, we can still imagine fixing the value of σn to that344
corresponding to the parametric resonance of interest, e.g. σ0 (with n = 0 and ξ0Ω = Ω/2)345
for SH1 or σ1 (with n = 1 and ξ1Ω = Ω) for H1. By considering then that for the SH1346
and H1 tongues, the system responds in time as exp (iΩt/2) and exp (iΩt), respectively, we347
can recast, for these two specific cases, equations (2.28) into a damped Mathieu equation348
(Benjamin & Ursell 1954; Kumar & Tuckerman 1994; Müller et al. 1997)349

∂2η̂

∂t ′2
+ σ̂n

∂η̂

∂t ′
+ ω2

0

(
1 − f

1 + Γ
cosΩt ′

)
η̂ = 0. (2.33)350

with either σ̂n = σ0 (SH1) or σ̂n = σ1 (H1) and where one can recognize that − (ξnΩ)2 η̂↔351
∂2η̂/∂t ′2 and i (ξnΩ) η̂ ↔ ∂η̂/∂t ′. Asymptotic approximations can be then computed by352

Rapids articles must not exceed this page length
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Figure 3: Faraday tongues computed via Floquet analysis at different fixed driving
frequencies (reported on the top of each panel). Black regions correspond to the unstable
Faraday tongues computed using σBL = 12ν/b2 as in the standard Darcy approximation,

whereas red regions are the unstable tongues computed with the present modified
σBL = χnν/b2. For this example, we consider ethanol 99.7% (see table 1) in a Hele-Shaw
cell of gap size b = 2mm filled to a depth h = 60mm. f denotes the non-dimensional
forcing acceleration, f = aΩ2/g, with dimensional forcing amplitude a and angular

frequency Ω. For plotting, we define a small scale-separation parameter ε = kb/2π and
arbitrarily set its maximum acceptable value to 0.2. Contact line dissipation is not

included, i.e. M = σCL = 0. SH stands for sub-harmonic, whereas H stands for harmonic.

expanding asymptotically the interface as η̂ = η̂0+ εη̂1+ ε
2η̂2+ . . ., with ε a small parameter353

� 1.354

2.2.1. First sub-harmonic tongue355

As anticipated above, when looking at the first or fundamental sub-harmonic tongue (SH1),356
one should take σ̂n → σ0 (with ξ0Ω = Ω/2), which is assumed small of order ε . The357
forcing amplitude f is also assumed of order ε . Furthermore, a small detuning ∼ ε , such358
that Ω = 2ω0 + ελ, is also considered, and, in the spirit of the multiple timescale analysis,359
a slow time scale τ′ = ε t ′ (Nayfeh 2008) is introduced. At leading order, the solution reads360
η̂0 = A(τ′)eiω0t

′
+ c.c., with c.c. denoting the complex conjugate part. At the second order361

in ε , the imposition of a solvability condition necessary to avoid secular terms prescribes the362
amplitude B(τ′) = A(τ′)e−iλτ′/2 to obey the following amplitude equation363

dB
dτ′
= −σ0

2
B − iλ

2
B − i ω0

4 (1 + Γ) f B. (2.34)364

Turning to polar coordinates, i.e. B = |B|eiΦ, keeping in mind that σ0 = σ0,r + iσ0,i and365
looking for stationary solutions with |B | , 0 (we skip the straightforward mathematical366
steps), one ends up with the following approximation for the marginal stability boundaries367
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Figure 4: First sub-harmonic and harmonic Faraday tongues at a driving frquency
1/T = 18Hz (T : forcing period) for the same configuration of figure 3. Black and red
regions show unstable tongues computed via Floquet analysis by using, respectively,

σBL = 12ν/b2 and the modified σBL = χ1ν/b2 from the present model. Dashed and solid
light-blue lines correspond to the asymptotic approximations according to (2.35)-(2.38).

associated with the first sub-harmonic Faraday tongue368

(
Ω + σ0,i

2ω0
− 1

)
= ± 1

4 (1 + Γ)

√√√
f 2 −

4σ2
0,r (1 + Γ)2

ω2
0

, (2.35)369

whose onset acceleration value, min f1SH , for a fixed driving frequency Ω/2π, amounts to370

min fSH1 = 2σ0,r

√
1 + Γ

gk tanh kh
≈ 2σ0,r

√
1
g

(
1
k
+

γ

ρg
k
)
, (2.36)371

Note that the final approximation on the right-hand-side of (2.36) only holds if kh � 1, so that372
tanh kh ≈ 1 (deep water regime). Given that χ0,r > 12 and χ0,i > 0 always, the asymptotic373
approximation (2.36), in its range of validity, suggests that Darcy’s model underestimates374
the sub-harmonic stability threshold. Moreover, from (2.35), the critical wavenumber k,375
associated with min fSH1, would correspond to that prescribed by the Darcy approximation376
but at an effective forcing frequencyΩ+σ0,i = 2ω0 instead of atΩ = 2ω0. This explains why377
the modified tongues appear to be shifted towards higher wavenumbers. These observations378
are well visible in figure 4.379

2.2.2. First harmonic tongue380

By analogy with §2.2.1, an analytical approximation of the first harmonic tongue (H1) can381
be provided. In the same spirit of Rajchenbach & Clamond (2015), we adapt the asymptotic382
scaling such that f is still of order ε , but τ′ = ε2t ′, σ̂n = σ1 ∼ ε2 (with ξ1Ω = Ω) and383
Ω = ω0 + ε

2λ. Pursuing the expansion up to ε2-order, with η̂0 = A(τ′)eiω0t
′
+ c.c. and384

B(τ′) = A(τ′)e−iλτ′ , will provide the amplitude equation385

dB
dτ′
= −σ1

2
B − iλB − i ω0

8 (1 + Γ)2
f 2B + i

ω0

12 (1 + Γ)2
f 2B. (2.37)386
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Liquid µ [mPa s] ρ
[
kg/m3] γ [N/m] M [Pa s]

ethanol 99.7% 1.096 785 0.0218 0.04
ethanol 70.0% 2.159 835 0.0234 0.0485
ethanol 50.0% 2.362 926 0.0296 0.07

Table 1: Characteristic fluid parameters for the three ethanol-water mixtures considered in
this study. Data for the pure ethanol and ethanol-water mixture (50%) are taken from Li
et al. (2019). The value of the friction parameter M for ethanol-70% is fitted from the
experimental measurements reported in §4, but lies well within the range of values used
by Li et al. (2019) and agrees with the linear trend displayed in figure 5 of Hamraoui et al.

(2000).
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m
in

f S
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1
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14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

14 16 18 20 22
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

b = 5mm
Darcy
Exp.

Present

b = 2mm
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Figure 5: Sub-harmonic instability onset, min f , versus driving frequency, 1/T (T : forcing
period). Comparison between theoretical data (empty squares: standard Darcy model,
σBL = 12ν/b2; coloured triangles: present model, σBL = χnν/b2) and experimental

measurements by Li et al. (2019). The values of the mobility parameter M here employed
are reported in the figure.

The approximation for the marginal stability boundaries derived from (2.37) takes the form387

(
Ω + σ1,i/2

ω0
− 1

)
=

f 2

12 (1 + Γ)2
± 1

8 (1 + Γ)2

√√√
f 4 −

(
4σ1,r (1 + Γ)2

ω0

)2

(2.38)388

with a minimum onset acceleration, min f1H389

min fH = 2√σ1,r

( (1 + Γ)3
gk tanh kh

)1/4
≈ 2√σ1,r

1
g1/4

(
1

k1/3 +
γ

ρg
k5/3

)3/4
, (2.39)390

and where, as before, the final approximation on the right-hand side is only valid in the deep391
water regime. Similarly to the sub-harmonic case, the critical wavenumber k corresponds to392
that prescribed by the Darcy approximation but at an effective forcing frequencyΩ+σ1,i/2 =393
ω0 instead of at Ω = ω0 and the onset acceleration is larger than that predicted from the394
Darcy approximation (as χ1,r > 12).395

2.3. Comparison with experiments by Li et al. (2019)396

Results presented so far were produced by assuming the absence of contact line dissipation,397
i.e. coefficient M was set to M = 0 so that σCL = 0. In this section, we reintroduce398
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such a dissipative contribution and we compare our theoretical predictions with a set of399
experimental measurements reported by Li et al. (2019), using the values they have proposed400
for M. This comparison, shown in figure 5, is outlined in terms of non-dimensional minimum401
onset acceleration, min f = min fSH1, versus driving frequency. These authors performed402
experiments in two different Hele-Shaw cells of length l = 300mm, fluid depth h = 60mm403
and gap-size b = 2mm or b = 5mm. Two fluids, whose properties are reported in table 1,404
were used: ethanol 99.7% and ethanol 50%. The empty squares in figure 5 are computed405
via Floquet stability analysis (2.32) using the Darcy approximation for σBL = 12ν/b2 and406
correspond to the theoretical prediction by Li et al. (2019), while the coloured triangles are407
computed using the present theory, with the corrected σBL = χnν/b2. Although the trend408
is approximately the same, the Darcy approximation underestimates the onset acceleration409
with respect to the present model, which overall compares better with the experimental410
measurements (black-filled circles). Some disagreement still exists, especially at smaller cell411
gaps, i.e. b = 2mm, where surface tension effects are even more prominent. This is likely412
attributable to an imperfect phenomenological contact line model (Bongarzone et al. 2021,413
2022b), whose definition falls beyond the scope of this work. Yet, this comparison shows414
how the modifications introduced by the present model contribute to closing the gap between415
theoretical Faraday onset estimates and these experiments.416

3. The case of thin annuli417

We now consider the case of a thin annular container, whose nominal radius is R and the418
actual inner and outer radii are R−b/2 and R+b/2, respectively (see the sketch in figure 1(b)).419
In the limit of b/R � 1, the wall curvature is negligible and the annular container can be420
considered a Hele-Shaw cell. The following change of variable for the radial coordinate,421
r ′ = R + y′ = R (1 + y′/R) with y′ ∈ [−b/2, b/2], will be useful in the rest of the analysis.422
As in §2, we first linearise around the rest state. Successively, we introduce the following423
non-dimensional quantities,424

r =
r ′

R
, y =

y′

b
, z =

z′

R
, u =

u′ϕ
aΩ

, v =
u′r

aΩ (b/R), w =
u′z
aΩ

, p =
p′

ρRaΩ2 . (3.1)425

It follows that, at leading order, r = 1 + yb/R ∼ 1 −→ 1/r = 1/(1 + yb/R) ∼ 1 but ∂/∂r =426
(R/b) ∂/∂y ∼ (b/R)−1 � 1. With this scaling and introducing the Floquet ansatzs (2.6a)-427
(2.6b), one obtains the following simplified governing equations,428

∂ũn
∂ϕ
+
∂ṽn
∂y
+
∂w̃n

∂z
= 0, (3.2a)429

430

iũn = − 1
ξn

∂ p̃n
∂ϕ
+
δ2
n

2
∂2ũn
∂y2 , iw̃n = − 1

ξn

∂ p̃n
∂z
+
δ2
n

2
∂2w̃n

∂y2 or ũn =
i
ξn
∇p̃nFn (y) , (3.2b)431

which are fully equivalent to those for the case of conventional rectangular cells if the432
transformation ϕ → x is introduced. Averaging the continuity equation with the imposition433
of the no-penetration condition at y = ∓1/2, v (∓1/2), eventually leads to434

∇2 p̃n =
∂2 p̃n
∂z2 +

∂2 p̃n
∂ϕ2 , (3.3)435
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identically to (2.11). Expanding p̃n in the azimuthal direction as p̃n = p̂n sin mϕ, with m the436
azimuthal wavenumber, provides437 (

∂2

∂z2 − m2
)

p̂n = 0 −→ p̂n = c1 cosh mz + c2 sinh mz, (3.4)438

and the no-penetration condition at the solid bottom located at z = −h/R, ŵn = ∂z p̂n = 0,439
prescribes440

p̂n = c1 (cosh mz + tanh mh/R sinh mz) . (3.5)441

Although so far the theory for the rectangular and the annular cases is the same, here it442
is crucial to observe that the axisymmetric container geometry translates into a periodicity443
condition:444

sin (−mπ) = sin (mπ) −→ sin mπ = 0, (3.6)445

which always imposes the azimuthal wavenumber to be an integer. In other words, in446
contradistinction with the case of §2, where the absence of lateral wall ideally allows for any447
wavenumber k, here we have m = 0,1,2,3, . . . ∈ N.448
By repeating the calculations outlined in §2, one ends up with the same equation (2.29)449

(and subsequent (2.30)-(2.32)), but where ω0 obeys to the quantized dispersion relation450

ω2
0 =

(
g

R
m +

γ

ρR3 m3
)

tanh m
h
R
= (1 + Γ) g

R
m tanh m

h
R
. (3.7)451

with Γ = γm2/ρgR2. In this context, a representation of Faraday’s tongues in the forcing452
frequency-amplitude plane appears most natural, as each parametric tongue will correspond453
to a fixed wavenumber m. Consequently, instead of fixing Ω and varying the wavenumber,454
here we solve (2.32) by fixing m and varying Ω.455

3.1. Floquet analysis and asymptotic approximation456

The results from this procedure are reported in figure 6, where, as in figure 3, the black457
regions correspond to the unstable tongues obtained according to the standard gap-averaged458
Darcy model, while the red ones are computed using the present theory with the corrected459
gap-averaged σBL = χnν/b2. The regions with the lowest thresholds in each panel are sub-460
harmonic tongues associated with modes from m = 1 to 14. In figure 6(a), no contact line461
model is included, i.e. M = 0, whereas in (b) a mobility parameter M = 0.0485 is accounted462
for. Panel (b) shows how the additional contact line dissipation, introduced by σCL ∝ m (see463
equation (2.27a)), dictates the linear-like trend followed by the minimum onset acceleration464
at larger azimuthal wavenumbers. The use of this specific value for M will be clarified in465
the next section when comparing the theory with dedicated experiments, but a thorough466
sensitivity analysis to variations of M is carried out in Appendix B.467
In general, the present model gives a higher instability threshold, consistent with the results468

reported in the previous section. However, the tongues are here shifted to the left.469
The asymptotic approximation for the sub-harmonic onset acceleration, adapted to this470

case from (2.35) yields:471

fSH1 = 2

√
(1 + Γ)

σ2
0,r

(g/R)m tanh mh/R + 4 (1 + Γ)2
(
Ω + σ0,i

2ω0
− 1

)2
, (3.8)472

with473

min fSH1 = 2σ0,r
1 + Γ
ω0

= 2σ0,r

√
1 + Γ

(g/R)m tanh mh/R ≈ 2σ0,r

√
R
g

(
1
m
+

γ

ρgR2 m
)
, (3.9)474
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Figure 6: Faraday tongues computed via Floquet analysis (2.32) at different fixed
azimuthal wavenumber m and varying the driving frequency, Ω/2/π. Black regions

correspond to the unstable Faraday tongues computed using σBL = 12ν/b2, whereas red
regions are the unstable tongues computed with the present modified σBL = χnν/b2. The

fluid parameters used here correspond to those given in table 1 for ethanol 70%. The
gap-size is set to b = 7mm, the fluid depth to h = 65mm and the nominal radius to
R = 44mm. Contact line dissipation is included in (b) and (d) by accounting for a

mobility coefficient M = 0.0485. The regions with the lowest thresholds in each panel are
sub-harmonic tongues associated with modes from m = 1 to 14.

helps us in rationalising the influence of the modified complex damping coefficient.475
This apparent opposite correction is a natural consequence of the different representations:476

varying wavenumber at a fixed forcing frequency (as in figure 3) versus varying forcing477
frequency at a fixed wavenumber (figure 6). Such a behaviour is clarified by the asymptotic478

relation (3.8) and, particularly by the term
(
Ω+σ0,i

2ω0
− 1

)
. In §2, the analysis is based on a479

fixed forcing frequency, while the wavenumber k and, hence, the natural frequency ω0, are480
free to vary. The first sub-harmonic Faraday tongue occurs when Ω + σ0,i ≈ 2ω0. Since481
Ω is fixed and σ0,i > 0, Ω + σ0,i > Ω such that ω0 and therefore k have to increase in482
order to satisfy the relation. On the other hand, if the wavenumber m and, hence, ω0 are483
fixed as in this section, then 2ω0 − σ0,i < 2ω0 and the forcing frequency around which the484
sub-harmonic resonance is centred, decreases of a contribution σ0,i , which introduces a485
frequency detuning responsible for the negative frequency shift displayed in figure 6.486

487
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3.2. Discussion on the system’s spatial quantization488

The frequency-dependence of the damping coefficient σn associated with each Faraday’s489
tongue is one of the first aspects that needs to be better discussed. In the case of horizontally490
infinite cells, the most natural description for investigating the system’s stability properties491
is in the (k, f ) plane for a fixed forcing angular frequency Ω (Kumar & Tuckerman 1994).492
According to our model, the oscillating system’s response occurring within each tongue is493

characterised by a Stokes boundary layer thickness δn =
√

2ν/(nΩ + α)/b. For instance, let494
us consider sub-harmonic resonances with α = Ω/2. As Ω is fixed (see any sub-panel of495
figure 3), each unstable region sees a constant δn (with n = 0,1,2, . . .) and hence a constant496
damping σn.497
On the other hand, in the case of quantised wavenumber as for the annular cell of §3,498

the most suitable description is in the driving frequency-driving amplitude plane at fixed499
wavenumber m (see figure 6) (Batson et al. 2013). In this description, each sub-harmonic500
(α = Ω/2) or harmonic (α = Ω) nth tongue associated with a wavenumber m, sees a δn, and501
thus a σn, changing with Ω along the tongue itself.502

503

4. Experiments504

In a real lab-scale experiment, the horizontal size of rectangular cells is never infinite due505
to the presence of lateral walls in the elongated direction. In such a case, however, the506
solution form (2.9) prevents the no-slip condition for the in-plane xz-velocity components507
to be imposed (Viola et al. 2017). This always translates into a theoretical underestimation508
of the overall damping of the system in rectangular Hele-Shaw cells, although the sidewall509
contribution is expected to be negligible for sufficiently long cells.510
On the other hand, the case of a thin annulus, by naturally filtering out this extra dissipation511

owing to the periodicity condition, offers a prototype configuration that can potentially allow512
one to quantify better the correction introduced by the present gap-averaged model when513
compared to dedicated experiments.514

4.1. Setup515

The experimental apparatus, shown in figure 7, consists in a Plexiglas annular container of516
height 100mm, nominal radius R = 44mm and gap-size b = 7mm. The container is then517
filled to a depth h = 65mm with ethanol 70% (see table 1 for the fluid properties). An air518
conditioning system helps in maintaining the temperature of the room at around 22◦. The519
container is mounted on a loudspeaker VISATON TIW 360 8Ω placed on a flat table and520
connected to a wave generator TEKTRONIX AFG 1022, whose output signal is amplified521
using awideband amplifier THURKBYTHANDERWA301. Themotion of the free surface is522
recorded with a digital camera NIKON D850 coupled with a 60mm f/2.8D lens and operated523
in slow motion mode, allowing for an acquisition frequency of 120 frames per second. A524
LED panel placed behind the apparatus provides back illumination of the fluid interface525
for better optimal contrast. The wave generator imposes a sinusoidal alternating voltage,526
v =

(
Vpp/2

)
cos (Ωt ′), with Ω the angular frequency and V pp the full peak-to-peak voltage.527

The response of the loudspeaker to this input translates into a vertical harmonic motion of528
the container, a cos (Ωt ′), whose amplitude, a [mm], is measured with a chromatic confocal529
displacement sensor STI CCS PRIMA/CLS-MG20. This optical pen, which is placed around530
2 cm (within the admissible working range of 2.5 cm) above the container and points at the531
top flat surface of the outer container’s wall, can detect the time-varying distance between532
the fixed sensor and the oscillating container’s surface with a sampling rate in the order of533
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Figure 7: Photo of the experimental setup

kHz and a precision of ±1 µm. Thus, the pen can be used to obtain a very precise real-time534
value of a as the voltage amplitude V pp and the frequency Ω are adjusted.535

4.2. Identification of the accessible experimental range536

Such a simple setup, however, put some constraints on the explorable experimental frequency537
range.538
(i) First, we must ensure that the loudspeaker’s output translates into a vertical container’s539

displacement following a sinusoidal time signal. To this end, the optical sensor is used to540
measure the container motion at different driving frequencies. These time signals are then541
fitted with a sinusoidal law. Figure 8 shows how, below a forcing frequency of 8Hz, the542
loudspeaker’s output begins to depart from a sinusoidal signal. This check imposes a first543
lower bound on the explorable frequency range.544
(ii) In addition, as Faraday waves only appear above a threshold amplitude, it is convenient545

to measure a priori the maximal vertical displacement a achievable. The loudspeaker546
response curve is reported in the bottom part of figure 8. A superposition of this curve with547
the predicted Faraday’s tongues immediately identifies the experimental frequency range548
within which the maximal achievable a is larger than the predicted Faraday threshold so that549
standing waves are expected to emerge in our experiments. Assuming the herein proposed550
gap-averaged model (red regions) to give a good prediction of the actual instability onset,551
the experimental range explored in the next section is limited to approximately ∈ [10.2,15.6]552
Hz.553

4.3. Procedure554

Given the constraints discussed in §4.2, experiments have been carried out in a frequency555
range between 10.2 Hz and 15.6 Hz with a frequency step of 0.1 Hz. For each fixed forcing556
frequency, the Faraday threshold is determined as follows: the forcing amplitude a is set557
to the maximal value achievable by the loudspeaker so as to trigger the emergence of the558
unstable Faraday wave quickly. The amplitude is then progressively decreased until the wave559
disappears and the surface becomes flat again.560
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Figure 8: Top: vertical container displacement a versus time at different forcing
frequencies. The black curves are the measured signal, while the green dash-dotted curves
are sinusoidal fitting. Below a forcing frequency of 8 Hz, the loudspeaker’s output begins
to depart from a sinusoidal signal. Bottom: sub-harmonic Faraday tongues computed by
accounting for contact line dissipation with a mobility parameter M = 0.0485. The light

blue curve here superposed corresponds to the maximal vertical displacement a
achievable with our setup. With this constraint, Faraday waves are expected to be

observable only in the frequency range highlighted in blue.

(b)(a)

Figure 9: Free surface shape at a forcing frequency 1/T = 11.7Hz (T : forcing period) and
corresponding to: (a) the lowest forcing amplitude value, a = 0.4693mm, for which the
m = 6 standing wave is present (the figure shows a temporal snapshot); (b) the largest
forcing amplitude value, a = 0.4158mm, for which the surface becomes flat and stable
again. Despite the small forcing amplitude variation, the change in amplitude is large

enough to allow for a visual inspection of the instability threshold with sufficient accuracy.

More precisely, a first quick pass across the threshold is made to determine an estimate561
of the sought amplitude. A second pass is then made by starting again from the maximum562
amplitude and decreasing it. When we approach the value determined during the first563
pass, we perform finer amplitude decrements, and we wait several minutes between each564
amplitude change to ensure that the wave stably persists. We eventually identify two values:565
the last amplitude where the instabilities were present (see figure 9(a)) and the first one566
where the surface becomes flat again (see figure 9(b)). Two more runs following an identical567
procedure are then performed to verify previously found values. Lastly, an average between568
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Figure 10: Experiments (empty circles) are compared to the theoretically predicted
sub-harmonic Faraday threshold computed via Floquet analysis (2.32) for different fixed
azimuthal wavenumber m and according to the standard (black solid lines) and revised
(red regions) gap-averaged models. The tongues are computed by including contact line
dissipation with a value of M equal to 0.0485 as in figure 6(b) and 8. As explained in §4.3,
the vertical error bars indicate the amplitude range between the smallest measured forcing
amplitude at which the instability was detected and the largest one at which the surface

remains stable and flat. These two limiting values are successively corrected by
accounting for the optical pen’s measurement error and the non-uniformity of the output

signal of the loudspeaker.

the smallest unstable amplitude and the largest stable one gives us the desired threshold.569
Once the threshold amplitude value is found for the considered frequency, the output of570

the wave generator is switched off, the frequency is changed, and the steps presented above571
are repeated for the new frequency. In this way, we always start from a stable configuration,572
limiting the possibility of nonlinear interaction between different modes.573
For each forcing frequency, the two limiting amplitude values, identified as described574

above, are used to define the error bars reported in figure 10. Those error bars must also575
account for the optical pen’s measurement error (0.1 µm), as well as the non-uniformity of576
the output signal. By looking at the measured average, minimum, and maximum amplitude577
values in the temporal output signal, it is noteworthy that the average value typically deviates578
from the minimum and maximum by around 10 µm. Consequently, we incorporate in the579
error bars this additional 10 µm of uncertainty in the value of a. The uncertainty in the580
frequency of the output signal is not included in the definition of the error bars, as it is tiny,581
on the order of 0.001Hz.582

583
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Figure 11: Snapshots of the wave patterns experimentally observed within the
sub-harmonic Faraday tongues associated with the azimuthal wavenumbers m = 5,6,7,8
and 9. T is the forcing period, which is approximately half the oscillation period of the
wave response. These patterns appear for: (m = 5) 1/T = 10.6Hz, a = 0.8mm; (m = 6)

1/T = 11.6Hz, a = 1.1mm; (m = 7) 1/T = 12.7Hz, a = 0.9mm; (m = 8),
1/T = 13.7Hz, a = 0.6mm; (m = 9) 1/T = 14.8Hz, a = 0.4mm. These forcing

amplitudes are the maximal achievable at their corresponding frequencies (see figure 8 for
the associated operating points). The number of peaks is easily countable by visual
inspection of two time-snapshots of the oscillating pattern extracted at t = 0,T and

t = T/2. This provides a simple criterion for the identification of the resonant wavenumber
m. See also supplementary movies 1-5 at the link: [URL will be inserted by publisher].
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4.4. Instability onset and wave patterns584

The experimentally detected threshold at each measured frequency is reported in figure 10585
in terms of forcing acceleration f and amplitude a. Once again, the black unstable regions586
are calculated according to the standard gap-averaged model with σBL = 12ν/b2, whereas587
red regions are the unstable tongues computed using the modified damping σBL = χnν/b2.588
Both scenarios include contact line dissipation σCL = (2M/ρb) (m/R) tanh (mh/R), with a589
value of M equal to 0.0485 for ethanol 70%. Although, at first, this value has been selected in590
order to fit our experimental measurements, it is in perfect agreement with the linear relation591
linking M to the liquid’s surface tension reported in figure 5 of Hamraoui et al. (2000) and592
used by Li et al. (2019) (see table 1).593
As figure 10 strikingly shows, the present theoretical thresholds match well our experi-594

mental measurements. On the contrary, the poor description of the oscillating boundary layer595
in the classical Darcy model translates into a lack of viscous dissipation. The arbitrary choice596
of a higher fitting parameter M value, e.g. M ≈ 0.09 would increase contact line dissipation597
and compensate for the underestimated Stokes boundary layer one, hence bringing these598
predictions much closer to experiments; however, such a value would lie well beyond599
the typical values reported in the literature. Furthermore, the real damping coefficient600
σBL = 12ν/b2 given by the Darcy theory does not account for the frequency detuning601
displayed by experiments. This frequency shift is instead well captured by the imaginary part602
of the new damping σBL = χnν/b2 (with χn = χn,r + iχn,i).603
Within the experimental frequency range considered, five different standing waves,604

corresponding to m = 5,6,7,8 and 9, have emerged. The identification of the wavenumber605
m has been performed by visual inspection of the free surface patterns reported in figure 11.606
Indeed, by looking at a time snapshot, it is possible to count the various wave peaks along607
the azimuthal direction.608
When looking at figure 10, it is worth commenting that on the left sides of the marginal609

stability boundaries associated with modes m = 5 and 6 we still have a little discrepancy610
between experiments and the model. Particularly, the experimental thresholds are slightly611
lower than the predicted ones. A possible explanation can be given by noticing that our612
experimental protocol is agnostic to the possibility of subcritical bifurcations and hysteresis,613
while such behaviour has been predicted by Douady (1990).614
As a side comment, one must keep in mind that the Hele-Shaw approximation remains615

good only if the wavelength, 2πR/m does not become too small, i.e. comparable to the cell’s616
gap, b. In other words, one must check that the ratio mb/2πR is of the order of the small617
separation-of-scale parameter, ε . For the largest wavenumber observed in our experiments,618
m = 9, the ratio mb/2πR amounts to 0.23, which is not exactly small. Yet, the Hele-Shaw619
approximation is seen to remain fairly good.620
The frequency detuning of the Faraday tongues is one of the main results of the621

present modified gap-averaged analysis. Although experiments match well the predicted622
sub-harmonic tongues reported in figure 10, other concomitant effects, such as a non-623
flat out-of-plane capillary meniscus, can contribute to shifting the natural frequencies and,624
consequently, the Faraday tongues, towards lower values (Douady 1990; Shao et al. 2021b).625
The present Floquet analysis assumes the static interface to be flat, although figure 9(b)626
shows that the stable free surface is not flat, but rather curved in the vicinity of the wall,627
where the meniscus height is approximately 1.5 mm. Bongarzone et al. (2022b) highlighted628
how a curved static interface can lower the natural frequencies. Since this effect has been629
ignored in the theoretical modelling, it is important to quantify such a frequency correction630
in relation to the one captured by the modified complex damping coefficient. This point631
is carefully addressed in Appendix C, where we demonstrate how the influence of a static632
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Figure 12: Zoom of the meniscus dynamics recorded at a driving frequency 1/11.6Hz and
amplitude a = 1.2mm for m = 6. Seven snapshots, (i)-(vii), covering one oscillation
period, T , for the container motion are illustrated. These snapshots show how the

meniscus profile and the macroscopic contact angle change in time during the second half
of the advancing cycle and the first half of the receding cycle, hence highlighting the
importance of the out-of-plane curvature or capillary effects. See also supplementary

movie 6 at the link: [URL will be inserted by publisher].

(i) (ii) (iii)

Figure 13: These three snapshots correspond to snapshots (ii), (iii) and (iv) of figure 12 and
show, using a different light contrast, how the contact line constantly moves over a wetted
substrate due to the presence of a stable thin film deposited and alimented at each cycle.

capillary meniscus does not significantly modify the natural frequencies of standing waves633
developing in the elongated (or azimuthal) direction.634

4.5. Contact angle variation and thin film deposition635

Before concluding, it is worth commenting on why the use of dynamic contact angle636
model (2.25) is justifiable and seen to give good estimates of the Faraday thresholds.637
Existing lab experiments have revealed that liquid oscillations in Hele-Shaw cells con-638

stantly experience an up-and-down driving force with an apparent contact angle θ constantly639
changing (Jiang et al. 2004). Our experiments are consistent with such evidence. In figure 12,640
we report seven snapshots, (i)-(vii), covering one oscillation period, T , for the container641
motion. These snapshots illustrate a zoom of the dynamic meniscus profile and show how642
the macroscopic contact angle changes in time during the second half of the advancing cycle643
(i)-(v) and the first half of the receding cycle (vi)-(x), hence highlighting the importance of644
the out-of-plane meniscus curvature variations. Thus, on the basis of our observations, it645
seemed appropriate to introduce a contact angle model in the theory to justify this associated646
additional dissipation, which would be neglected by assuming M = 0. The model used in647
this study, and already implemented by Li et al. (2019), is very simple; it assumes the cosine648
of the dynamic contact angle to linearly depend on the capillary number Ca (Hamraoui et al.649
2000). Accounting for such a model is shown, both in Li et al. (2019) and in this study,650
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to supplement the theoretical predictions by a sufficient extra dissipation suitable to match651
experimental measurements.652
This dissipation eventually reduces to a simple damping coefficient σCL as it is of653

linear nature. A unique constant value of the mobility parameter M is sufficient to fit all654
our experimental measurements at once, suggesting that the meniscus dynamics is not655
significantly affected by the evolution of the wave in the azimuthal direction, i.e. by the656
wavenumber, and M can be seen as an intrinsic property of the liquid-substrate interface.657
Several studies have discussed the dependence of the system’s dissipation on the substrate658

material (Huh & Scriven 1971; Dussan 1979; Cocciaro et al. 1993; Ting & Perlin 1995; Eral659
et al. 2013; Viola et al. 2018; Viola & Gallaire 2018; Xia & Steen 2018). These authors,660
among others, have unveiled and rationalised interesting features such as solid-like friction661
induced by contact angle hysteresis. This strongly nonlinear contact line behaviour does662
not seem to be present in our experiments. This can be tentatively explained by looking663
at figure 13. These snapshots illustrate how the contact line constantly flows over a wetted664
substrate due to the presence of a stable thin film deposited and alimented at each oscillation665
cycle. This feature has also been recently described by Dollet et al. (2020), who showed that666
the relaxation dynamics of liquid oscillation in a U-shaped tube filled with ethanol, due to the667
presence of a similar thin film, obey an exponential law that can be well-fitted by introducing668
a simple linear damping, as done in this work.669

5. Conclusions670

Previous theoretical analyses for Faraday waves in Hele-Shaw cells have so far relied on the671
Darcy approximation, which is based on the parabolic flow profile assumption in the narrow672
direction and that translates into a real-valued damping coefficient σBL = 12ν/b2, with ν the673
fluid kinematic viscosity and b the cell’s gap-size, that englobes the dissipation originated674
from the Stokes boundary layers over the two lateral walls. However, Darcy’s model is known675
to be inaccurate whenever inertia is not negligible, e.g. in unsteady flows such as oscillating676
standing or travelling waves.677
In this work, we have proposed a gap-averaged linear model that accounts for inertial678

effects induced by the unsteady terms in the Navier-Stokes equations, amounting to a pulsatile679
flow where the fluid motion reduces to a two-dimensional oscillating flow, reminiscent of680
the Womersley flow in cylindrical pipes. When gap-averaging the linearised Navier-Stokes681
equation, this results in amodified damping coefficient,σBL = χnν/b2, with χn = χn,r+iχn,i682
complex-valued, which is a function of the ratio between the Stokes boundary layer thickness683
and the cell’s gap-size, and whose value depends on the frequency of the system’s response684
specific to each unstable parametric Faraday tongue.685
After having revisited the ideal case of infinitely long rectangular Hele-Shaw cells, for686

which we have found a good agreement against the experiments by Li et al. (2019), we687
have considered the case of Faraday waves in thin annuli. Due to the periodicity condition,688
this annular geometry naturally filters out the additional, although small, dissipation coming689
from the lateral wall in the elongated direction of finite-size lab-scale Hele-Shaw cells.690
Hence, a thin annulus offers a prototype configuration that can allow one to quantify better691
the correction introduced by the present gap-averaged theory when compared to dedicated692
experiments and to the standard gap-averaged Darcy model.693
A series of homemade experiments for the latter configuration has proven that Darcy’s694

model typically underestimates the Faraday threshold, as χn,r > 12, and overlooks a695
frequency detuning introduced by χn,i > 0, which appears essential to correctly predict696
the location of the Faraday’s tongue in the frequency spectrum. The frequency-dependent697
gap-averagedmodel proposed here successfully predicts these features and brings the Faraday698
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Figure 14: Same Faraday tongues of figure 3 by solving the eigenvalue problem (2.32)
with N = 10 for three different fixed driving angular frequencies (reported on the top of

each panel) and using the modified σBL = χnν/b2. Contact line dissipation is not
included, i.e. M = σCL = 0. A much wider range of forcing acceleration, f 6 50, is
shown so as to give a more comprehensive view of the linear stability map. The

convergence analysis outlined in table 2 is performed for the value of kb/2π indicated by
the vertical white dashed line, i.e. 0.178.

thresholds estimated theoretically closer to the ones measured.699
Furthermore, a close look at the experimentally observed meniscus and contact angle700

dynamics highlighted the importance of the out-of-plane curvature, whose contribution has701
been neglected so far in the literature, with the exception of Li et al. (2019). This evidence702
justifies the employment of a dynamical contact angle model to recover the extra contact line703
dissipation and close the gap with experimental measurements.704
A natural extension of this work is to examine the existence of a drift instability at higher705

forcing amplitudes.706

Appendix A. Convergence analysis as the truncation number N varies707

In §2.1, we have briefly described the procedure employed for solving the eigenvalue708
problem (2.32), where the structure of matricesA andB in the two cases of sub-harmonic and709
harmonic parametric resonances are given in Kumar & Tuckerman (1994). For each driving710
frequency and wavenumber, the eigenvalue problem is solved in Matlab using the built-in711
function eigs. Successively, by selecting one or several smallest, real positive values of f , one712
can draw the marginal stability boundaries of the various parametric tongues. For instance,713
those boundaries are indicated in figure 14 by the black dots, each of which corresponds to714
an eigenvalue f for a fixed combination (k,Ω).715
In order to ensure the numerical convergence of the results, the dependency of the716

eigenvalues on the truncation number N must be checked. Throughout the paper, we have717
used a truncation number N = 10, which produces 2 (N + 1) × 2 (N + 1) = 22× 22 matrices.718
For their purposes, Kumar & Tuckerman (1994) used N = 5 or N = 10, which were sufficient719
to guarantee a good convergence. However, as the problem presented here differs from that720
tackled in Kumar & Tuckerman (1994), whether a similar truncation number, e.g. N = 10,721
is still sufficient needs to be verified.722
A convergence analysis as N varies is reported in table 2. The analysis is carried out with723

respect to the results already discussed in figure 3, but for a much wider range of forcing724
acceleration, f = aΩ2/g, which represents the eigenvalue of problem (2.32). The values of725
f reported in table 2 are computed for a driving frequency of 4Hz and for kb/2π = 0.1783,726
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Sub-Harmonic, ξn = n + 1/2, n = 0,1,2, . . . ,N

N = 05 1.9517 6.9132 10.5310 15.0202 24.1264 70.3367 – – – –
N = 06 1.9517 6.9132 10.4992 14.3629 18.8594 25.6483 41.2706 121.3904 – –
N = 07 1.9517 6.9132 10.4990 14.3475 18.5500 23.2569 29.3149 39.6413 64.2494 190.0024
N = 08 1.9517 6.9132 10.4990 14.3474 18.5435 23.1178 28.1327 34.0246 42.4155 57.5681
N = 09 1.9517 6.9132 10.4990 14.3474 18.5434 23.1153 28.0740 33.4474 39.4465 47.0194
N = 10 1.9517 6.9130 10.4990 14.3474 18.5434 23.1153 28.0731 33.4242 39.1782 45.4332
N = 15 1.9517 6.9130 10.4990 14.3474 18.5434 23.1153 28.0731 33.4239 39.1694 45.3128
N = 20 1.9517 6.9130 10.4990 14.3474 18.5434 23.1153 28.0731 33.4239 39.1694 45.3128

Harmonic, ξn = n, n = 1,2, . . . ,N

N = 05 6.9143 10.5916 15.8092 30.3987 – – – – –
N = 06 6.9134 10.4995 14.3927 19.2294 27.8359 53.9776 – – –
N = 07 6.9134 10.4988 14.3479 18.5629 23.4347 30.3688 44.0177 86.0342 –
N = 08 6.9134 10.4988 14.3475 18.5435 23.1232 28.2143 34.5709 44.5890 65.0100
N = 09 6.9134 10.4988 14.3475 18.5433 23.1155 28.0759 33.4827 39.7255 48.2205
N = 10 6.9134 10.4988 14.3475 18.5433 23.1154 28.0731 33.4250 39.1924 45.5686
N = 15 6.9134 10.4988 14.3475 18.5433 23.1154 28.0731 33.4239 39.1694 45.3129
N = 20 6.9134 10.4988 14.3475 18.5433 23.1154 28.0731 33.4239 39.1694 45.3129

Table 2: First smallest real positive eigenvalues, f = aΩ2/g (6 50), outputted by the
Floquet analysis at different truncation number N for a fixed driving frequency of 4Hz

and for a fixed value of kb/2π, e.g. 0.178, as indicated by the vertical white dashed line in
figure 14. The top table reports the values computed from the calculation of sub-harmonic
(SH) tongues, whereas the bottom table reports those from the calculation of harmonic

(H) tongues. The dash symbol, e.g. for N = 5, is used to indicate that no other real positive
eigenvalues were found.

as indicated by the white dashed line in figure 14(a). Table 2 shows that a truncation number727
N = 5 is not sufficient to achieve convergence of the eigenvalues f 6 50. Particularly, the728
algorithm does not succeed in finding many eigenvalues of interest as N is too small to729
describe all the sub-harmonic and harmonic boundaries encountered at this value of kb/2π730
for f 6 50. Yet, N = 5 already provides a very high resolution of the first 2 or 3 eigenvalues731
for both sub-harmonic (SH) and harmonic tongues (H), which are sufficient to obtain the732
results discussed throughout the manuscript. The accuracy increases from N = 5 to N = 9733
and the results for N = 15 or 20 confirm that a satisfactory convergence of all eigenvalues734
f 6 50 is achieved for N = 10, with a maximum relative error < 0.6% .735

Appendix B. Sensitivity analysis to variations of the contact line parameter M736

Although the introduction of the mobility parameter M is not the central point of this paper,737
the effect of this parameter on the stability properties of Faraday waves in Hele-Shaw cells738
has not been fully elucidated yet. With regards to the sub-harmonic Faraday threshold in thin739
annuli discussed in §3 and §4, in this appendix, we carry out a sensitivity analysis of the740
instability onset to variations of M .741
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Figure 15: (a)-(b) Individual contributions, i.e. boundary layer and contact line
(M = 0.0485), to the sub-harmonic onset acceleration of the first 15 azimuthal modes as

prescribed by (B 2). (c)-(d) Onset acceleration of the first 15 azimuthal modes as
prescribed by (B 2) for several values of M . Panels (a)-(c) use the boundary layer damping
from the Darcy theory, while panels (b)-(d) use the modified damping coefficient presented

in this work. Note that in each subpanel, the solid lines only serve to guide the eye.

The asymptotic approximation (3.9)742

min fSH1 ≈ 2σ0,r

√
R
g

(
1
m
+

γ

ρgR2 m
)
, (B 1)743

gives us a simple analytical formula for the minimum onset acceleration fSH1 associated with744
the first sub-harmonic parametric instability of a generic azimuthal mode m. Specifically,745
equation (B 1) helps us to rationalise the effect of interplaying restoring forces, i.e. gravity and746
capillarity, and dissipation sources, i.e. boundary layers and contact line, on the instability747
onset.748
Recalling the definition of σ0,r from (2.27a), the onset acceleration is given by the sum of749

two contributions750

min fSH1 ≈ 2 χn=0,r
ν

b2

√
R
g

(
1
m
+

γ

ρgR2 m
)
+

4M
ρb

m
R

√
R
g

(
1
m
+

γ

ρgR2 m
)
, (B 2)751

where the deep water approximation tanh (mh/R) ≈ 1 has been used for simplicity.752
The two contributions and their sum are plotted in figure 15(a)-(b), where the filled circles753
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correspond to the azimuthal wavenumbers reported in figure 6, i.e. m = 1,2, . . . ,15. The754
parameter M is fixed to the value used in §3 and §4, i.e. 0.0485. In panel (a) the boundary755
layer damping is the one given by the Darcy theory, 12ν/b2, whereas in panel (b) the modified756
damping coefficient χn=0,rν/b2 is used. In the absence of contact line dissipation, the onset757
acceleration of low m-modes progressively decreases as the threshold is dictated by the758

gravity term ∼
√

1/m, while capillarity only matters at larger m. On the contrary, assuming759
M , 0 introduces a correction ∼ √m that, depending on the value of M , may quickly760

dominate over
√

1/m, hence leading to a growing min fSH1 already at relatively low m. Such761
a trend is exacerbated by larger M . This is clearly visible in figure 15(c)-(d), where only the762
overall value min fSH1 is plotted for several values of M .763
The exact same arguments apply as well to the case of rectangular Hele-Shaw cells with the764

only difference that m/R→ k. A similar trend of min fSH1 for increasing driving frequencies765
is indeed observable in figure 5.766

Appendix C. Modification of the unforced dispersion relation due to a non-flat767
out-of-plane capillary meniscus768

The revised gap-averaged Floquet analysis formalized in this work provides a modified769
damping coefficient, σCL = χnν/b2 with χn ∈ C, whose imaginary part χn,i > 0 leads770
to a frequency detuning of the Faraday tongues. This detuning represents one of the main771
findings of the analysis and seems confirmed by our experimental observations.772
However, there may be other concomitant effects ignored by the analysis, such as a non-flat773

out-of-plane capillary meniscus, that could contribute to shifting the natural frequencies and,774
consequently, the Faraday tongues, towards lower values, thus possibly questioning the actual775
improvement brought by the present theory. Bongarzone et al. (2022b) highlighted how a776
curved static interface lowers the resonant frequencies. Since this effect has been ignored777
in our theoretical model, it is important to quantify such a frequency shift in relation to the778
one produced by the oscillating boundary layer, so as to verify that the detuning is actually779
produced by the oscillating viscous boundary layers rather than by static capillary effects.780
A way to disentangle the latter contribution from the former one consists in estimating781

the inviscid natural frequencies when a static meniscus is present. This Appendix, which782
is inspired by the work of Monsalve et al. (2022), aims precisely to address this point.783
Specifically, some of the results reported inMonsalve et al. (2022)will be used in figure 16(a)-784
(c) as a validation of the numerical method employed in the following.785
Note that the analysis is carried out for transversewaveswithwavenumber k in a rectangular786

channel, but it also applies to azimuthal waves with wavenumber m in thin annular channels.787
Indeed, we have shown in §3 that for small gap-sizes b the governing equations in the two788
cases coincide, with the only difference that k becomes m/R and m = 1,2, . . ., i.e. for a fixed789
radius R, the wavenumber is discrete.790
Thefirst step consists of computing the shape of the actual two-dimensional staticmeniscus,791

whose governing equation balances gravity and capillarity792

ρgη′s = γκ
′ (η′s ) = γ η′s,y′y′(

1 + η′2s,y′
)3/2 , with

∂η′s
∂y′

����
y′=±b/2

= cot θs . (C 1)793
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Note that the shape of the meniscus is assumed invariant in the elongated direction x ′ (or ϕ)794
so that η′s,x′ = η

′
s,x′x′ = 0 (x ′↔ ϕ):795

κ′
(
η′s

)
=
η′s,x′x′

(
1 + η′2s,y′

)
+ η′s,y′y′

(
1 + η′2s,x′

)
− 2η′s,x′η

′
s,y′η

′
s,x′y′(

1 + η′2s,x′ + η
′2
s,y′

)3/2 =
η′s,y′y′(

1 + η′2s,y
)3/2 . (C 2)796

Equation (C 1) is nonlinear in η′s and is solved numerically in Matlab through a Chebyshev797
collocationmethod and theGauss–Lobatto–Chebyshev collocation grid s ∈ [−1,1] ismapped798
into the physical space y′ ∈ [0, b/2] through the linear mapping y′ = (s + 1)b/4. Hence the799
solution to the nonlinear equation is obtained bymeans of an iterative Newtonmethod, whose800
detailed steps are given in Appendix A.1 of Viola et al. (2018).801
Figure 9(b) shows that the stable free surface is not flat, but rather curved in the vicinity of802

the wall, where the meniscus height is approximately 1.5 mm. Given the fluid properties of803
ethanol 70%, we can fit the value of the static contact angle in order to retrieve the measured804
meniscus height. The results of this procedure are given in figure 16(b), which displays the805
shape of the static out-of-plane capillary meniscus corresponding to our experiments. A806
static angle θs = 28◦, which coincides with the value measured by Dollet et al. (2020), is807
found to give the correct meniscus height at the wall.808
Next, we introduce the velocity potential Φ′ and write down the potential form of the809

unforced governing equations and boundary conditions introduced in §2. Those equations810
are linearized around the rest state, which has now a curved static interface in the direction811
of the small gap-size, i.e. η′s (y) , 0. The continuity equation rewrites as the Laplacian of the812
velocity potential813

− k2Φ̌′ +
∂2Φ̌′

∂y′2
+
∂2Φ̌′

∂z′2
= 0, (C 3)814

subjected to the no-penetration condition at the solid bottoms and lateral walls ∂Φ̌′/∂n′ = 0,815
while the dynamic and kinematic conditions read816

iω0Φ̌
′ = −gη̌′ + γ

ρ


1(

1 + η′2s,y′
)3/2

∂2

∂y′2
−

3η′s,y′y′η
′
s,y′(

1 + η′s,y′
)5/2

∂

∂y′
− k2(

1 + η′2s,y′
)1/2


η̌′, (C 4)817

818

iω0η̌
′ =

∂Φ̌′

∂z′
, (C 5)819

where the following ansatzes for the infinitesimal perturbations820

Φ′ = Φ̌′ (y′, z′) ei(ω0t
′+kx′) + c.c., η′ = η̌′ (y′) ei(ω0t

′+kx′) + c.c., (C 6)821

have been introduced. In order to close the problem we enforced a contact line condition822

∂η̌′

∂y′

����
y′=±b/2

= 0 (free) or
∂η̌′

∂t ′

����
y′=±b/2

= 0 (pinned). (C 7)823

Conditions (C 7) represent two diametrically opposed scenarios. The most relevant condition824
to be considered for our experiments is the free contact line, but the results obtained from the825
imposition of the pinned contact line condition are used for validation with Monsalve et al.826
(2022). Regardless of the chosen contact line condition (C 7), equations (C 3)-(C 8) can be827
recast into the generalized eigenvalue problem828

(iω0B − Ak) q̌′ = 0, (C 8)829
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Figure 16: (a) Static meniscus measured experimentally by Monsalve et al. (2022) using
water and a gap-size b = 22 mm (dashed line) and computed numerically according

to (C 1) using a value of θs = 75◦. (b) Shape of the static meniscus computed numerically
in our experimental setup. (c) Black solid line: theoretical dispersion relation for the case
of water, fluid depth h = 50 mm and b = 22 mm, ω2

0 =
(
1 + γk2/ρg

)
gk tanh kh. Grey

solid line: numerical dispersion relation in the case of a pinned contact line. Red dotted,
grey dotted and grey dashed lines give the meniscus corrections to the two dispersion
relations, while the blue filled circles correspond to the experiments of Monsalve et al.
(2022) with a pinned contact line and with the static meniscus reported in panel (a). A

comparison of this panel (c) to figure 8 of Monsalve et al. (2022) validates our numerical
scheme. Their curves are not reported for the sake of clarity but perfectly overlap our

curves. (d) Same as in (c), but for the condition of our experimental setup. The blue-filled
circles correspond to the driving frequency associated with the minimal onset acceleration

amplitude for modes m = 5,6,7,8 and 9 for which k = m/R (R = 44 mm). The inset
shows that the meniscus correction to the frequency, being negligible, does not explain the
frequency shift of the experimental Faraday tongues. Indeed, the blue markers lie above all
dispersion relations obtained by varying the static contact angle and wetting conditions.

with q̌′ =
{
Φ̌′, η̌′

}T a naturalmode of the system andω0 the associated natural frequency. The830
expression of linear operators B and Ak is given in Viola et al. (2018).Those operators are831
here discretized by means of the Chebyshev collocation method, where a two-dimensional832
mapping is used to map the computational space to the physical space that has a curved833
boundary due to the static meniscus η′s. The eigenvalue problem (C 8) is then solved834
numerically in Matlab using the built-in function eigs by providing the wavenumber k as an835
input. The number of grid points in the radial and vertical direction is ny = nz = 60, which836
largely ensures convergence of the results. This numerical approach has been employed and837
validated in a series of recent works (Bongarzone et al. 2022a; Marcotte et al. 2023a,b), and838
a detailed description of its implementation can be found in Appendix A.2 of Viola et al.839
(2018).840
The modified dispersion relation of transverse (or azimuthal) wave computed numerically841

by solving (C 8) is displayed in figure 16(c)-(d). Panel (c) reproduces figure 8 of Monsalve842
et al. (2022) and only serves as a further validation step for our numerical method. Instead,843
panel (d) shows that our measurements (blue markers) lie above all dispersion relations844
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obtained by varying the static contact angle and wetting conditions. In other words, the845
nose of the Faraday tongues are found at frequencies lower than any of those obtained by846
accounting for the meniscus shape and the wetting conditions, irrespective of the latter. This847
indicates that another mechanism accounts for this frequency shift. Since in addition, in848
the free contact line regime, the static contact angle does not have a perceivable effect, the849
entirety of the frequency shift has to be accounted for by another effect, which we show to850
possibly be unsteady boundary layers.851
Panels (c) and (d) both show that meniscus modifications are much more pronounced,852

at least at low θs values, when the contact line remains pinned at the lateral walls. This is853
somewhat intuitive as the first-order interface shape strongly depends on the y′-coordinate854
(see figure 5 of Monsalve et al. (2022)), whereas it is almost invariant in y′ if the contact855
line follows a free dynamics. Given that in our experiments the contact line follows a free856
dynamics, we can eventually justify ignoring the shape of the out-of-plane capillarymeniscus.857
On the other hand, the actual shape of the static meniscus is important for pinned contact858
line conditions, as it provokes a non-negligible increase of the natural frequencies (Wilson859
et al. 2022).860

Supplementary Material861

Supplementary movies 1-5 show the time evolution of the free surface associated with the862
snapshots reported in figure 11. Supplementarymovie 6 provides instead a better visualisation863
of the meniscus and the thin film dynamics as illustrated in figures 12 and 13 of this864
manuscript. Supplementary movies are available at the link: [URL will be inserted by865
publisher].866
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