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The recent experimental and numerical investigation presented by Bertsch et al.
(2020a) describes the self–sustained oscillations induced by the interaction of two im-
pinging jets in microfluidic devices. While the oscillatory regime induced by interacting
jets has been studied in detail, the physical mechanism behind these oscillations remains
still undetermined. In parallel, but for a different range of aspect ratios, Burshtein
et al. (2019) experimentally found that hysteretic behaviours due to multiple symmetry–
breakings can appear in cross–slot flows. The present paper focuses on two–dimensional
oscillators subjected to a fully developed inlet flow, as in Bertsch et al. (2020a) and
in contradistinction with Pawlowski et al. (2006), who focused on plug inlet flow. The
linear global stability analysis performed confirms the existence of an oscillating global
mode, whose spatial structure qualitatively coincides with the one computed numerically
by Bertsch et al. (2020a), suggesting that the physical mechanism from which the
oscillations would originate is predominantly two–dimensional. The mode interaction
of the oscillating mode with a steady symmetry–breaking mode is examined making
use of the weakly nonlinear theory, which shows how the system exhibits hysteresis in
a certain range of aspect ratios. Lastly, sensitivity analysis is exploited to identify the
wavemaker associated with the global modes, whose examination allows us to spot the
core of the symmetry–breaking instability at the stagnation point and to identify the
Kelvin–Helmholtz instability, located in the jets interaction region, as the main candidate
for the origin of the oscillations observed in both two–dimensional and three–dimensional
fluidic devices.
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1. Introduction

Fluidic devices based on networks of jets interacting with each other, as X–junction or
cross–slot flows, exhibit a series of complex phenomena, which may collaborate, giving
rise to various physical instabilities. The understanding of their dynamical properties
may lead to new building blocks of fluidic networks, that can be used for mixing or
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connecting purposes, like for instance purely hydrodynamic DC-AC converters. While
in many engineering applications, instabilities are seen as endangering features to be
avoided, resulting in entire parametric regions to be discarded or in the need for efficient
control strategies, the example of fluidic devices illustrates a radically different view:
symmetry–breaking and dynamic (resulting in self–sustained oscillations) bifurcations
can be harnessed for the design of new elementary building blocks for microfluidic
circuitry, like DC–AC converters or switching devices, with promising applications in
their automation.

Recently Bertsch et al. (2020a,b) provided a detailed experimental and numerical
description of the self–sustained oscillatory regime induced by the interaction of two
impinging jets in microscale feedback–free fluidic devices operating in laminar flow
conditions. While this work presents some similarities with the experimental observations
proposed by Tesař (2009) and Denshchikov et al. (1978, 1983), it differs from the latter
for the dimensions (micrometer vs. centimeter range) and the operating conditions
(laminar vs. turbulent jets). Bertsch et al. (2020a) studied the evolution of the self–
oscillation frequency when the main geometric parameters of the cavity were changed.
The frequency was shown to be proportional to the averaged flow velocity imposed
at the symmetric inlets and inversely proportional to the distance between the jets.
The oscillatory instability was experimentally seen to be of supercritical nature with
oscillations starting above a precise instability threshold. Although several plausible
candidates were proposed by Bertsch et al. (2020a), no physical mechanism could be
precisely identified from which the self–sustained oscillations would originate.

Cross–slot flows are also known to show hysteresis. Burshtein et al. (2019) experimen-
tally showed that hysteretic behaviours due to symmetry–breaking transitions appear
in X–junction flows with proper geometrical parameters, for which no oscillations are
observed. There are similarities in the microchannel geometries between the case de-
scribed by Burshtein et al. (2019) and Bertsch et al. (2020a), with microchannels crossing
at right angle in both cases and liquid flows at relatively low values of the Reynolds
number. However, in the geometry considered by Burshtein et al. (2019) all channels
have comparable dimension, whereas in Bertsch et al. (2020a), there are two facing
narrow channels which open into wider channels. In Bertsch et al. (2020a) oscillations
were observed only in the cases where the wider channels have dimensions at least 3
times larger than the narrow channels, which differs significantly from Burshtein et al.
(2019). Such a consideration underlines the importance of the distance separating the
inlets in cross–slot geometries in the destabilization mechanism.

The present work aims to answer two main questions arising from different observations
presented in Bertsch et al. (2020a) and Burshtein et al. (2019): (i) to identify the
physical mechanism governing the self–sustained oscillatory regime studied in Bertsch
et al. (2020a); (ii) to investigate the existence of a range of geometrical parameters in
which steady symmetry–breaking conditions could directly interact with this dynamic
instability.

With these objectives, we consider here a two–dimensional X–junction with straight
lateral channels and two symmetric inlets, where a fully developed flow is imposed,
separated by a certain distance. Despite the simplistic geometry, a 2D flow not only
allows one to perform a faster computational analysis but it also often makes it possible
to capture the main physical features of interest of the 3D problem. Since the main
principal geometrical parameter, the distance between the two jets, is kept in this crude
dimensional reduction from 3D to 2D, we may expect that our 2D analysis reveals the
dominant physical mechanism behind the oscillatory instability observed in 3D. Steady
symmetry–breaking instabilities are also expected in 2D (Liu et al. 2016; Pawlowski et al.
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2006), even if of a different nature than the intrinsically 3D one presented in Burshtein
et al. (2019). An exhaustive stability analysis is here conducted using the tools of the
classic linear global stability and sensitivity analysis as well as the weakly nonlinear
theory based on amplitude equations, whose fundamental aspects are briefly summarized
by Meliga et al. (2009a).

In the following we recall from Meliga et al. (2009a) only the salient points: when a
steady flow loses its stability, e.g. owing to the variation of a control parameter, it bifur-
cates towards a new state, that may be either steady or unsteady. If a single eigenmode
is responsible for the instability, the weakly nonlinear dynamics close to the threshold
will occur in the one-dimensional slow manifold. The only degree of freedom is then the
amplitude of the unstable eigenmode, which is governed by an amplitude equation. When
multiple eigenmodes are simultaneously responsible for the destabilization of the steady
base–flow, the dimension of the slow manifold is equal to the number of bifurcating modes,
and the normal form involves one degree of freedom per bifurcating mode, leading to a
system of coupled amplitude equations. Such cases are known as multiple codimension
bifurcations and require the tuning of multiple independent control parameters for the
various global modes to be simultaneously neutral. The normal form describes the weakly
nonlinear interactions between unstable modes and reduces the dynamics of the whole
fluid system to a low–dimensional model.

As stated above, in our numerical investigation we opt for a fully developed inlet flow.
This choice is made by analogy with Bertsch et al. (2020a), but in contradistinction with
previous work by Pawlowski et al. (2006), who carried out a thorough stability analysis
of the very same flow configuration, with the only difference that a plug inlet flow was
examined. These authors discovered the existence of a steady symmetry–breaking global
mode and an oscillating global mode, which can be unstable in different regions of a
stability map, given as Reynolds number versus aspect ratio. However, they did not
discuss the origin of the oscillatory regime and they did not report the presence of
hysteretic behaviour.

The present paper is organized as follows. In §2 the flow configuration and the governing
equations describing the fluid motion inside a two–dimensional microfluidic cavity with
an imposed fully developed inlet flow are introduced. In §3 the numerical approaches
adopted are described. In §4 the steady symmetric base–flow is determined, while the
tools of the linear global stability analysis are employed to derive the associated stability
chart, where the two control parameters, Reynolds number and aspect ratio are varied in
a wide range. The nonlinear global mode interaction emerging from the stability analysis
is then discussed in §5 making use of the weakly nonlinear theory and the multiple
scale technique. The resulting bifurcation diagram is validated in §6. Sensitivity analyses
are carried out in §7, which is devoted to the understanding of the physical mechanism
behind the various of instability observed. We finally analyze the effect of a different inlet
velocity profile by applying the weakly nonlinear model to the flow case of plug inlet
profiles, revisiting the analysis of Pawlowski et al. (2006). Conclusions are presented in
§9.

2. Flow configuration and governing equations

Let us consider the two–dimensional X–junction (also called cross–junction) presented
in figure 1. An incompressible fluid with density ρ and dynamic viscosity µ enters the
device through two facing inlets of width w, denoted by ∂Ωi, and it is allowed to flow
out along the two symmetric arms of the main lateral channel. The two symmetric inlets
mimic the action of two inlet channels separated by a distance s to create two facing
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Figure 1. Microfluidic oscillator cavity with straight output channels explored in this work.
Notation: inlet width w, gap size s, overall length 2Lout, walls ∂Ωw, outlets ∂Ωo, x–axis of
symmetry at y = 0, ∂Ωh and y–axis of symmetry at x = 0, ∂Ωv. U denotes the mean value of
the velocity profile imposed at the inlets, ∂Ωi.

jets when they reach the lateral channel. Outlets, ∂Ωo, are provided at both ends of the
channel, at a distance Lout, far away from the intersection. In figure 1, Ω denotes the
fluid domain, while U is the average velocity of the fluid at the inlet channels. Taking the
advantage of the geometric symmetries of this microfluidic oscillator, the computational
domain can be reduced to a quarter of the full domain, with y– and x–axes of symmetry
∂Ωv and ∂Ωh respectively. Proper boundary conditions for the fluid problem, listed in
sections §4 and §5, are then imposed at ∂Ωv and ∂Ωh. As sketched in figure 1, a fully
developed flow is imposed at the inlets at y = ±s/2. This assumption, removing the
influence of the inlet channel length, allows us to reduce the number of geometrical
parameters, simplifying the parametric analysis.

The introduction of the following dimensionless variables (the star denotes the dimen-
sional quantities),

x =
x∗

w
, y =

y∗

s
, u =

u∗

U
, v =

v∗

U
, p =

p∗

ρU2
, t =

t∗

w/U
. (2.1)

leads to the definition of the aspect ratio AR = s/w and of the nabla operator, ∇AR ={
∂
∂x ,

1
AR

∂
∂y

}T
. The fluid motion within the microfluidic oscillator cavity, Ω, is governed

by the two–dimensional incompressible Navier–Stokes equations, whose non–dimensional
form reads:

∂u

∂t
+ (u · ∇AR) u +∇AR p− 1

Re
∆ARu = 0, (2.2)

∇AR · u = 0, (2.3)

In (2.2)-(2.3), u = {u, v}T is the velocity field, p is the pressure field and Re = ρUw/µ
is the Reynolds number. The no-slip boundary condition is imposed at the rigid solid
wall, ∂Ωw, u|∂Ωw

= 0, while an outflow boundary condition is imposed at the outlet,

∂Ωo,
(
−pI + 1

Re∇ARu
)
·n = 0, where n is the unit normal to ∂Ωo and I is the identity

tensor. At the inlet, ∂Ωi, a fully developed parabolic velocity profile is imposed:

u|∂Ωi
=

{
0,−3

2

(
1− 4x2

)}T
. (2.4)

3. Numerical approach

Two different numerical approaches are adopted in the present paper. The numerical
scheme used to derive the global stability chart, §4, to analyze the weakly nonlinear global
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Figure 2. Computational domain considered in the global stability analysis, weakly nonlinear
study and sensitivity analysis. w = 1, L2 = 5w, L3 = 20w, Lout = 70w and s = 1. Number of
elements per unit length used for the various line with different thickness: n1, n2, n3 and n4.

mode interaction, §5, and to perform sensitivity analysis, §7, is a finite element method
based on the FreeFem++ software (Hecht et al. 2011). The mesh refinement is controlled
by the vertex densities on both external and internal boundaries. Regions where the
mesh density varies are depicted in figure 2. The unknown velocity and pressure fields
{u, p}T are spatially discretized using a basis of Taylor–Hood elements (P2, P1). The
matrix inverses are computed using the UMFPACK package (Davis & Duff 1997). The
steady base–flow is obtained by the classic iterative Newton method, while eigenvalue
calculations are performed using the ARPACK package (Lehoucq et al. 1998). For other
details see Sipp & Lebedev (2007); Meliga et al. (2009a); Meliga & Gallaire (2011);
Meliga et al. (2012). With reference to figure 2, five different meshes, denoted M1–M5,
exhibiting different boundary vertex densities, ni, have been used to assess convergence
in numerical result. In the following, we will focus on the mesh M5 to present all results.
A detailed convergence analysis of meshes M1–M5 is given in Appendix A.

The results obtained from the weakly nonlinear investigation are then compared to
direct numerical simulations (DNS) in §6. The open–source code Nek5000 (Lottes et al.
2008) has been used to perform the DNS. The spatial discretization is based on the
spectral element method. The full two-dimensional geometry (without imposing any
symmetry conditions) is divided in macro boxes; each macro box is then characterized
by an imposed number of quadrilateral elements, along the two Cartesian coordinates
x and y, within which the solution is represented in terms of N -th order Lagrange
polynomials interpolants, based on tensor product arrays of Gauss–Lobatto–Legendre
(GLL) quadrature point in each spectral element; the common algebraic PN/PN−2
scheme is implemented, with N fixed to 7 for velocity and 5 for pressure. The domain is
thus discretized with a structured multiblock grid consisting of 4920 spectral elements,
which largely guarantees the convergence. The time–integration is handled with the semi–
implicit method, already implemented in Nek5000; the linear terms in equations (2.3)-
(2.2) are treated implicitly adopting a third order backward differentiation formula
(BDF3), whereas the advective nonlinear term is estimated using a third order explicit
extrapolation formula (EXT3). The semi-implicit scheme introduces restriction on the
time step (Karniadakis et al. 1991), therefore an adaptive time-step is set to guarantee the
Courant-Friedrichs-Lewy (CFL) constraint. See Bertsch et al. (2020a) for more details.

4. Steady base–flow and linear global stability analysis

The flow field q = {u, p}T is decomposed in a steady base–flow, q0 = {u0, p0}T and a

small perturbation q = {u1, p1}T , of infinitesimal amplitude ε.
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4.1. Steady base–flow

The base flow, q0 = {u0, p0}T , is sought as a steady solution of the nonlinear Navier–
Stokes equations,

(u0 · ∇AR) u0 +∇AR p0 −
1

Re
∆ARu0 = 0, ∇AR · u0 = 0, (4.1)

with the boundary conditions,

u0|∂Ωw
= 0,

(
−p0I +

1

Re
∇ARu0

)
· n
∣∣∣∣
∂Ωo

= 0, u0|∂Ωi
=

{
0,−3

2

(
1− 4x2

)}T
.

(4.2)
The steady base–flow velocity fields, u0 (x, y) and v0 (x, y), are characterized by the
following symmetry and antisymmetry properties with respect to the y– and x–axes
of symmetry, ∂Ωv and ∂Ωh,

u0 (x, y) = u0 (x,−y) = −u0 (−x, y) , (4.3)

v0 (x, y) = −v0 (x,−y) = v0 (−x, y) , (4.4)

which translate in the following boundary conditions imposed at ∂Ωh and ∂Ωv:

v0|∂Ωh
= 0,

∂u0
∂y

∣∣∣∣
∂Ωh

= 0, u0|∂Ωv
= 0,

∂v0
∂x

∣∣∣∣
∂Ωv

= 0. (4.5)

An approximate guess solution satisfying the required boundary conditions is first ob-
tained by solving the associated Stokes problem, where the advective term is neglected.
The solution of the steady nonlinear equation, q0, is then obtained using an iterative
Newton method (Barkley et al. 2002; Barkley 2006). Here the iterative process is carried
out until the L2– norm of the residual of the governing equations for q0 becomes smaller
than 1× 10−12.

Figure 3 shows the symmetric spatial structure of the magnitude of the steady velocity
field for Re = 22.65 and AR = 6.98. As observed in figure 3, the y–velocity component
is dominant in the central region, near the two inlets. The two facing jets collide and the
fluid is repulsed and advected downstream, towards the two outlets. A stagnation point
is thus present at x = y = 0 owing to the symmetry properties. We also observe the
presence of four symmetric recirculation regions close to the channel inlets and resulting
from the presence of walls, where a no-slip boundary conditions is enforced. Heading
towards the channel outlets, the flow approaches a fully developed flow. The present
base–flow configuration is qualitatively comparable to the one recently observed in the
three–dimensional experimental and numerical investigations carried out by Bertsch et al.
(2020a).

4.2. Global eigenmode analysis

At leading order in ε, q1 = {u1, p1}T is an unsteady solution of the linearized Navier–
Stokes equations around the ε0–order solution (steady base–flow):

∂u1

∂t
+(u0 · ∇AR) u1 +(u1 · ∇AR) u0 +∇AR p1−

1

Re
∆ARu1 = 0, ∇ARu1 = 0, (4.6)

with the boundary conditions,

u1 · n|∂Ωw
= 0,

(
−p1I +

1

Re
∇ARu1

)
· n
∣∣∣∣
∂Ωo

= 0, u1|∂Ωi
= 0. (4.7)
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Figure 3. Steady base–flow for Re = 22.65 and AR = 6.98. Color map: magnitude of the
velocity field. White lines: streamlines associated with the steady base–flow. Red dashed lines:
boundaries of the four symmetric recirculation regions. The solution in the full flow domain is
rebuilt using the symmetry properties. Only the central portion, x ∈ [−25, 25], is shown here.

The system can be written in a compact form as:

(B∂t +A) q1 = 0, (4.8)

where the matrices A and B read:

A =

(
CAR (u0, · )− 1

Re∆AR ∇AR
∇TAR 0

)
, B =

(
I 0
0 0

)
. (4.9)

being I the identity matrix and CAR the ε0–order symmetric advection operator,
CAR (a,b) = (a · ∇AR) b + (b · ∇AR) a. We thus look for a first order solution which
takes the normal mode form

q1 = q̂1e
(σ+iω)t + c.c., (4.10)

where c.c. denotes the complex conjugate. Substituting (4.10) in (4.8) the ε–order system
reduces to the generalized eigenvalue problem:

[(σ + iω)B +A] q̂1 = 0. (4.11)

In figure 4 the eigenvalues are displayed for different Reynolds numbers and aspect ratio
values. In order to build the full eigenvalue spectrum using the reduced computational
domain, we explored all the possible symmetries and antisymmetries of the perturbation
velocity field u1 by imposing different axis boundary conditions analogous to (4.5). From
the stability chart displayed in the (Re, AR) plane of figure 4-(b) it emerges that the
steady base–flow is stable below a critical aspect ratio, whose value is found to be
approximately AR ≈ 1.75 for a Reynolds number Re = 230 (maximum value investigated
in the present study). Analogously, the base–flow is stable below a Reynolds number Re ≈
8 for an aspect ratio AR = 70 (maximum value considered here). As depicted in figure 4-
(b) a codimension–2 point, C2, is found for Re = ReC2

= 22.65 and AR = ARC2
= 6.98,

where two different global modes, mode A, non–oscillating, and mode B, oscillating and
characterized by a Strouhal number StC2

= f w/U = ω/2π = 0.016, are simultaneously
marginally stable. This evidence motivates the weakly nonlinear analysis presented in
§5, which aims to investigate the interaction between modes A and B. The presence of a
second steady mode, denoted by C, is also observed. From the linear analysis, a second
codimension–2 point appears between the oscillating mode B and the second steady
mode C, however at a parameter setting (Re, AR) = (62, 4), mode A is far above its
threshold, which jeopardizes the use of the linear and weakly nonlinear stability tools.
Further considerations about the effect of the second steady mode C are provided in
Appendix B, while hereinafter we will focus on global modes A and B and their global
interactions.
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Figure 4. (a) Eigenvalues displayed in the (σ, ω) plane for Re = ReC2 = 22.65 and
AR = ARC2 = 6.98. A pair of complex eigenvalues, denoted by B together with a pure real
eigenvalue, A, are found to be simultaneously marginally stable for the present combination
of parameters. Eigenvalues on the left side of the spectrum are not physical and correspond
to spurious modes, whose presence is due to the influence of outlet boundary conditions. The
position of eigenvalues A, B and C is not affected by Lout in the range Lout ∈ [30, 100]. (b)
Marginal stability curves corresponding to the modes A and B and to a second steady mode C
as a function of Re and AR. A codimension–2 point, C2, is found for Re = ReC2 = 22.65 and
AR = ARC2 = 6.98.

Figure 5. Spatial structure of the x– and y–velocity components associated with the direct
global modes A and B at the codimension–2 point, C2 = (ReC2 , ARC2) = (22.65, 6.98). (a),
(c) x– and y–velocity fields corresponding to the direct steady mode A. (b), (d) Real part of the
x– and y–velocity fields corresponding to the direct oscillating mode B.

As a side remark to figure 4-(b), an extrapolation of the marginal stability curve
associated to mode C suggests that it would cross the curve of mode A for Re > 100.
Nevertheless, the eigenvalue calculation performed in the range Re ∈ [100, 230] (not
visible in 4-(b)), showed that for Re = 230 and AR = 1.75 the stability boundary is
still delimited by mode A (C does not cross A). Indeed the two curves for modes A and
C seem to approach two asymptotes (as well as the curve for mode B), whose actual
existence could be confirmed by higher Reynolds calculations, which are however beyond
the scope of this work.

The symmetry properties which characterized the two global modes A and B, reading

uA1 (x, y) = −uA1 (x,−y) = −uA1 (−x, y) , vA1 (x, y) = vA1 (x,−y) = vA1 (−x, y) , (4.12)

uB1 (x, y) = −uB1 (x,−y) = uB1 (−x, y) , vB1 (x, y) = vB1 (x,−y) = −vB1 (−x, y) , (4.13)

lead to the following axis boundary conditions:

uA1
∣∣
∂Ωh

= 0,
∂vA1
∂y

∣∣∣∣
∂Ωh

= 0, uA1
∣∣
∂Ωv

= 0,
∂vA1
∂x

∣∣∣∣
∂Ωv

= 0, (4.14)



Impinging planar jets: hysteretic behaviour and self–sustained oscillations 9

Figure 6. Spatial structure of the x– and y–velocity components associated with the direct
and adjoint global modes at the codimension–2 point, C2 = (ReC2 , ARC2) = (22.65, 6.98). (a),
(c) x– and y–velocity fields corresponding to the adjoint steady mode A. (b), (d) Real part of
the x–and y–velocity fields corresponding to the adjoint oscillating mode B.

uB1
∣∣
∂Ωh

= 0,
∂vB1
∂y

∣∣∣∣
∂Ωh

= 0, vB1
∣∣
∂Ωv

= 0,
∂uB1
∂x

∣∣∣∣
∂Ωv

= 0. (4.15)

For a given global mode, q̂1, we also compute the corresponding adjoint global mode,
q̂†1, which will be used in §5 and which satisfies the adjoint eigenvalue problem,[

(σ − iω)B† +A†
]
q̂†1 = 0. (4.16)

where A† and B† are the adjoint operators of the linear operator A and the mass matrix
B, obtained by integrating by parts system (4.6).

A† =

(
C†AR (u0, · )− 1

Re∆AR −∇AR
∇TAR 0

)
, B† =

(
I 0
0 0

)
. (4.17)

Here C†AR (a,b) is the adjoint advection operator, which is not symmetric and which

reads C†AR (a,b) = − (a · ∇AR)
T

b + (b · ∇AR) a. The adjoint boundary conditions are
defined so that all boundary terms arising from the integration by parts are nil. Thus we
obtain,

u†1

∣∣∣
∂Ωw

= 0, (u0 · n) û†1 +

(
p†1I +

1

Re
∇u†1

)
· n
∣∣∣∣
∂Ωo

= 0, u†1

∣∣∣
∂Ωi

= 0, (4.18)

uA†1

∣∣∣
∂Ωh

= 0,
∂vA†1

∂y

∣∣∣∣∣
∂Ωh

= 0, uA†1

∣∣∣
∂Ωv

= 0,
∂vA†1

∂x

∣∣∣∣∣
∂Ωv

= 0, (4.19)

uB†1

∣∣∣
∂Ωh

= 0,
∂vB†1

∂y

∣∣∣∣∣
∂Ωh

= 0, vB†1

∣∣∣
∂Ωv

= 0,
∂uB†1

∂x

∣∣∣∣∣
∂Ωv

= 0. (4.20)

We checked a posteriori that both direct and adjoint problems have an identical spectrum
and the direct and adjoint modes satisfy the bi–orthogonality property (see Meliga et al.
(2009a)).

Figures 5 and 6 show the spatial structure of the velocity fields along the x– and y–
axis associated with the direct and adjoint global modes A and B respectively. While the
direct modes are normalized using the value of the y–velocity field, v̂1, in a generic grid
point, i.e. (x, y) = (0.5, 0), the adjoint modes are normalized such that < q̂†1,Bq̂1 >= 1,
where <,> is the inner product defined by < a,b >=

∫
Ω

a∗ · b dΩ, the star ∗ denotes
the complex conjugate and · indicates the canonical hermitian scalar product in Cn.
This normalization will simplify the expression of the various coefficients derived in §5.
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In figure 5-(b) and (d) the real part velocity components of the oscillating mode along
the x– and y–axis are represented. Their spatial structure is qualitatively analogous to
the one recently presented in the three–dimensional study performed by Bertsch et al.
(2020a), which confirms that this kind of instability arises in both the two–dimensional
and three–dimensional problems for proper combinations of control parameters, Re and
AR, and which suggests that the same physical mechanism is behind the origin of the
self–sustained oscillations regime. As mentioned by Bertsch et al. (2020a), the structure
of the perturbation velocity fields of mode B in the left and right output channels and
their well defined wave–length is typical of sinuous shear instabilities, like the famous one
characterizing the unsteady flow past a circular cylinder (Ding & Kawahara 1999; Barkley
2006; Sipp & Lebedev 2007). From the analysis of the corresponding adjoint mode (see
figure 6-(b) and (d)), we see that the spatial structure of the adjoint is localized in the
central region, near the two inlets. In classic shear instabilities of open flow, a downstream
localization of the global mode and an upstream localization of the adjoint global mode
resulting from the convective non-normality of the linearized Navier–Stokes operator
(Chomaz 2005) is observed. Identifying two downstream directions towards the outlets
and two upstream directions corresponding to the inlets, a similar characteristic is found.
This evidence motivates the detailed investigation, presented in §7, of the nature of this
instability, which, from the knowledge of the authors, remained undetermined so far.

Concerning the steady global mode A (see figure 5-(a) and (c)), it represents a
steady symmetry–breaking condition with respect to the x–axis of symmetry. Given the
symmetries of mode A, this steady instability corresponds to two possible new steady
configurations (bi–stability), symmetric with respect to the x–axis. It leads to a positive
off–set of the stagnation point above the x–axis (respectively a negative off–set below the
x–axis) in the y–direction (at x = 0); the two recirculation regions above (respectively
below) the axis become smaller than the two below (respectively above) the axis. The
corresponding adjoint mode (see figure 6-(a) and (c)) maintains a structure similar to
the one of the direct mode.

The existence of a steady symmetry–breaking global mode and an oscillating global
mode, which can be unstable in different regions of a stability map is also qualitatively
consistent with the numerical analysis proposed by Pawlowski et al. (2006), who examined
the same 2D–configuration with the only difference that a plug inlet profile was considered
(see section §8 for further comments about the influence of a plug inlet velocity profile).

5. Weakly nonlinear formulation

5.1. Presentation

Since a codimension–2 point, C2 = (ReC2 , ARC2) = (22.65, 6.98), is found from the
linear stability analysis, we present in this section a weakly nonlinear analysis in order to
investigate the mode interaction between the steady mode A and the oscillating mode B.
In other words, we implement an asymptotic expansion where the two modes have the
same order of magnitude. The departure from criticality, in terms of Reynolds number
and aspect ratio, is assumed to be of order ε2. Hence, we introduce the two order one
parameters, δ = ε2δ̃ and α = ε2α̃, such that:

1

Re
=

1

ReC2

− ε2δ̃, 1

AR
=

1

ARC2

+ ε2α̃. (5.1)

In the spirit of the multiple scale technique, we introduce the slow time scale T = ε2t,
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being t the fast time scale defined in (2.1). Hence, the entire flow field is expanded as:

q = {u, v, p}T = q0 + εq1 + ε2q2 + ε3q3 + O
(
ε4
)
, (5.2)

In order to easily write the equations at the various order in ε in a compact form, it is
useful to introduce the following expansion for the nabla operator, ∇:

∇AR =

{
∂

∂x
,

1

AR

∂

∂y

}T
=

{
∂

∂x
,

1

ARC2

∂

∂y

}T
+ε2α̃

{
0,

∂

∂y

}T
= ∇ARC2

+ε2α̃∇α+O
(
ε3
)
.

(5.3)
The definition of the Laplacian follows:

∆AR = ∇TAR∇AR =
(
∇ARC2

+ ε2α̃∇α
)T (∇ARC2

+ ε2α̃∇α
)

= (5.4)(
∂2

∂x2
+

1

AR2
C2

∂2

∂y2

)
+ ε2

2α̃

ARC2

∂2

∂y2
= ∆ARC2

+ ε22α̃∆αARC2
+ O

(
ε3
)
.

Substituting the expansions defined above in the governing equations (2.3)–(2.2) with
their boundary conditions, a series of problems at the different orders in ε are obtained.

5.2. Order ε0: steady base–flow

At order ε0 the system is represented by the nonlinear equations for the steady
symmetric base–flow (4.1) with boundary conditions (4.2)-(4.5). The solution, computed
for ReC2 and ARC2 via iterative Newton’s method, was described in §4.1.

5.3. Order ε: linear global stability

At leading order in ε, the system is represented by the unsteady Navier–Stokes
equations linearized around the base–flow for ReC2

and ARC2
, whose solution has been

presented in §4.2. In this framework, the solution of the leading order system is assumed
to be composed by the sum of the two global modes, A and B,

q1 = A (T ) q̂A1 +
(
B (T ) q̂B1 e

iωt + c.c.
)
, (5.5)

that destabilized the steady state q0. In equation (5.5), the amplitude A (T ), which varies
with the slow time scale T and the associated normalized eigenfunction are purely real,
while the amplitude B (T ) and eigenfunction for mode B are complex. Introducing (5.5)
in the ε–order system, a generalized eigenvalue problem for mode A and B, whose general
form reads (iωB +A) q̂1 = 0, is retrieved. We remark that at the codimension–2 point,
both modes are marginally stable, therefore their growth rate are nil, σA = σB = 0 in
C2, while the oscillation frequency of mode B is ω = 0.10157.

5.4. Order ε2: base–flow modifications, mean–flow corrections, mode–interaction and
second–harmonic response

At order ε2 we obtain the linearized Navier–Stokes equations applied to q2 = {u2, p2}T :

(B∂t +A) q2 = F2, (5.6)

with the boundary conditions

u2|∂Ωw
= 0,

(
−p2I +

1

ReC2

∇ARC2
u2

)
· n
∣∣∣∣
∂Ωo

= 0, u2|∂Ωi
= 0, (5.7)
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and forced by a term F2 depending only on zero and first–order solutions,

F2 =

(
−δ̃∆ARC2

u0 + 2α̃

ReC2

∆αARC2
u0 − α̃∇αp0 − α̃

2 Cα (u0,u0)− 1
2CARC2

(u1,u1)

−α̃∇α · u0

)
,

(5.8)

where Cα is the ε2–order symmetric advection operator, Cα (a,b) = (a · ∇α) b +
(b · ∇α) a, while CARC2

(a,b) =
(
a · ∇ARC2

)
b +

(
b · ∇ARC2

)
a. Terms proportional to

δ and α arise from the Reynolds number and aspect ratio variations with respect to
the codimension–2 point definition and they act on the base–flow. The last term in the
y–component of (5.8) is due to the transport of the first–order solution q1 by itself.
Introducing the first–order normal form (5.5) in the forcing term expressed in (5.8), the
different contributions can be individualized:

F2 = δ̃F̂
δ

2 + α̃F̂
α

2 +A2F̂
A2

2 + |B|2F̂
|B|2

2︸ ︷︷ ︸
Fj

2={Fj
2x,F

j
2y}T

+

(
B2F̂

B2

2 ei2ωt +ABF̂
AB

2 eiωt + c.c.

)
(5.9)

Looking at (5.9), we recognize the second harmonic for mode B, which is pulsating
at 2ω 6= ω and thus it does not resonate and does not need the imposition of any
compatibility condition. In principle, all the other terms could be classified as resonating
terms in mode A or B for which the forced problem results to be singular and hence it
is necessary to verify the solvability condition or Fredholm alternative. However, we can
make use of the symmetry properties of the various forcing terms, as recently proposed in
Camarri & Mengali (2019), to show that some of these conditions are implicitly satisfied.
Indeed, the first four forcing terms, having ω = 0, are characterized by the following
symmetries at the x– and y–axis,

F j2y
∣∣∣
∂Ωh

= 0,
∂F j2x
∂y

∣∣∣∣∣
∂Ωh

= 0, F j2x
∣∣∣
∂Ωv

= 0,
∂F j2y
∂x

∣∣∣∣∣
∂Ωv

= 0, (5.10)

which does not coincide with the axis boundary conditions for mode A given in (4.14).
Consequently, the solvability condition for A is naturally satisfied by symmetry proper-
ties. The same argument is applicable to the last terms oscillating in ω, arisen from the
direct competition of modes A and B, which is characterized by the symmetries,

F̂AB2y

∣∣∣
∂Ωh

= 0,
∂F̂AB2x

∂y

∣∣∣∣∣
∂Ωh

= 0, F̂AB2y

∣∣∣
∂Ωv

= 0,
∂F̂AB2x

∂x

∣∣∣∣∣
∂Ωv

= 0, (5.11)

that differ from the boundary conditions for mode B given in (4.15) and automatically
satisfy the solvability condition. It follows that, using the mentioned symmetry consid-
erations, no solvability condition needs to be imposed at the ε2–order. We thus look for
a second–order solution having the expression:

q2 = δ̃q̂δ2 + α̃q̂α2 +A2q̂A
2

2 + |B|2q̂|B|
2

2 +
(
B2q̂B

2

2 ei2ωt +ABq̂AB2 eiωt + c.c.
)

(5.12)

where each single response is evaluated by means of a global resolvent technique (Viola
et al. 2016; Garnaud et al. 2013).

All the second–order responses are displayed in figure 7 in terms of their x–velocity
component. As shown in figure 7-(f) the second harmonic response for the global mode
B is essentially periodic in space with a wave–length twice the one of the direct mode
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Figure 7. Second–order responses corresponding respectively to (a)-(b) base–flow modifications
due to Reynolds number and aspect ratio variations with respect to the codimension–2 point,
C2, (c)-(d) mean flow correction associated to mode A and B respectively, (e)-(f) harmonic
interaction between the steady mode A and the oscillating mode B and second harmonic for
mode B.

(see figure 5-(b) and (d)), while the interaction between A and B (see figure 7-(e)) is
nearly periodic in space with a wave–length close to the one of the direct mode B within
a central region near the jets collision, where the direct mode A mainly acts, and it
vanishes far away as the mode A vanishes too (see figure 5-(a) and (c)).

5.5. Order ε3: amplitude equations

At the ε3–order we derive the system of amplitude equations which describe the weakly
nonlinear global mode interaction of A and B. The problem at order ε3 is similar to the
one obtained at order ε2, as it indeed appears as a linear system forced by the previous
order solutions, englobed in F3,

(B∂t +A) q3 = F3, (5.13)

and subjected to the boundary conditions,

u3|∂Ωw
= 0,

(
−p3I +

1

ReC2

∇ARC2
u3

)
· n
∣∣∣∣
∂Ωo

= 0, u3|∂Ωi
= 0. (5.14)

The ε3–order forcing term, F3, by substituting the first– and second–order solutions,
reads:

F3 = (5.15)(
−∂Tu1 − δ̃∆ARC2

u1 + 2α̃

ReC2

∆αARC2
u1 − α̃∇αp1 − α̃Cα (u0,u1)− CARC2

(u1,u2)

−α̃∇αu1

)
=

= −∂A
∂T
Bq̂A1 +A

(
δ̃F̂

δA

3 + α̃F̂
αA

3

)
+A3F̂

A3

3 +A|B|2F̂
A|B|2

3 + (5.16)

+

{[
−∂B
∂T
Bq̂B1 +B

(
δ̃F̂

δB

3 + α̃F̂
αB

3

)
+ |B|2BF̂

|B|2B
3 +A2BF̂

A2B

3

]
eiωt + c.c.

}
+ N.R.T.

where N.R.T. gathers all the non–resonating terms, not relevant for the further analysis
and omitted thereafter. The first term in the y–component of equation (5.15) corresponds
to the slow time evolution of the amplitudes A (T ) and B (T ) with the slow time scale T =
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ε2t. The last term is due to the advection of the leading order solution by the second–order
solution and vice versa. All the other terms arise from the Reynolds number and aspect
ratio variation acting on the ε–order solution. As standard in multiple scale analysis,
in order to avoid secular terms and solve the expansion procedure at the third order, a
compatibility condition must be enforced through the Fredholm alternative (Friedrichs
2012).

The compatibility condition imposes the amplitudes A (T ) and B (T ) to obey the
following relations:

dA

dt
= (δζA + αηA)A− µAA3 − χAA|B|2, (5.17)

dB

dt
= (δζB + αηB)B − µB |B|2B − χBBA2. (5.18)

where the physical time scale t has been reintroduced, δ = ε2δ̃ = 1/ReC2
− 1/Re,

α = ε2α̃ = 1/AR − 1/ARC2
and the various coefficients, whose values are reported

in Appendix A, are computed as scalar products between the adjoint global modes q̂†1

and the resonant forcing terms F̂
i

3, i.e. for instance,

ζA =
< q̂A†1 , F̂

δA

3 >

< q̂A†1 ,Bq̂A1 >
=< q̂A†1 , F̂

δA

3 >, ζB =
< q̂B†1 , F̂

δB

3 >

< q̂B†1 ,Bq̂B1 >
=< q̂B†1 , F̂

δB

3 >, (5.19)

since < q̂A†1 ,Bq̂A1 >=< q̂B†1 ,Bq̂B1 >= 1 due to the normalization introduced in §4.2.
The detailed expression of each normal form coefficient is provided in Appendix A.
Equations (5.17)-(5.18) differ from the classic Stuart–Landau equations, describing the
pitchfork and Hopf bifurcations of single modes, by the two coupling terms, χAA|B|2 and
χBBA

2, coming from third–order nonlinearities. The structure of system (5.17)-(5.18) is
well known in literature and is analogous to that derived by Meliga et al. (2012), where
a formally equivalent analysis is performed to investigate weakly nonlinear interactions
for mode selection in swirling jets.

5.5.1. Stability analysis of the amplitude equations

Here we perform the stability analysis of the amplitude equations (5.17)-(5.18). Recall-
ing that the amplitude A is purely real, as well as all the coefficients associated with its
equation, while amplitude B and the related amplitude equation coefficients are complex,
so that we can turn to polar coordinates, i.e. B = |B|eiΦB , and split the modulus and
phase parts of equations (5.17)-(5.18):

dA

dt
= (δζA + αηA)A− µAA3 − χAA|B|2, (5.20)

d|B|
dt

= (δζBr + αηBr) |B| − µBr|B|3 − χBr|B|A2, (5.21)

dΦB
dt

= (δζBi + αηBi)− µBi|B|2 − χBiA2. (5.22)

System (5.20)–(5.21) presents different possible equilibria (Kuznetsov 2013). Below the
threshold the system is stable and the trivial equilibrium with A = |B| = 0 is retrieved.
Two other possible equilibria correspond to (A 6= 0, |B| = 0) (pitchfork bifurcation for
mode A) or (A = 0, |B| 6= 0) (Hopf bifurcation for mode B). The single mode pitchfork



Impinging planar jets: hysteretic behaviour and self–sustained oscillations 15

and Hopf bifurcations are easily found, removing the coupling terms by setting χA =

χB = 0 and looking for a stationary solution of equations (5.20)–(5.21), dA
dt = d|B|

dt = 0.
This leads to the classic solutions,

A2 =
δζA + αηA

µA
, |B|2 =

δζBr + αηBr
µBr

. (5.23)

The non–trivial equilibrium with (A 6= 0, |B| 6= 0) is obtained reintroducing the coupling
terms and investigating the existence of a parameter region in which both mode coexist.

Indeed, looking for a stationary solution dA
dt = d|B|

dt = 0 we obtain the following system,[
µA χA
χBr µBr

]{
A2

|B|2
}

=

{
δζA + αηA
δζBr + αηBr

}
, (5.24)

which admits a physical solution only for Re and AR values for which A2 > 0 and
|B|2 > 0. Solving (5.24), we get:

A2 =
(δζA + αηA)µBr

− χA (δζBr
+ αηBr

)

µAµBr − χAχBr

, (5.25)

|B|2 =
(δζBr + αηBr )µA − χBr (δζA + αηA)

µAµBr
− χAχBr

. (5.26)

The general relation for the phase of mode B at large time, which varies linearly in time,
reads,

ΦB |t→+∞ =
[
(δζBi + αηBi)− µBi|B|2 − χBiA2

]
t, (5.27)

meaning that the frequency at large time will saturate to the following prescribed
valued, function of the Reynolds number and aspect ratio variation with respect to the
codimension–2 point, C2:

ω|t→+∞ = ωC2
+
[
(δζBi + αηBi)− µBi|B|2 − χBiA2

]
. (5.28)

Combining all these ingredients, the bifurcation diagram proposed in figure 8-(a), (b)
and (c) presents a complex series of bifurcations. The stability of the various branches was
numerically assessed by time–marching equations (5.20)-(5.21) using the Matlab function
ode23. As depicted in figure 8-(b) for a fixed value of aspect ratio, AR = 6.5 < ARC2

,
the steady mode A bifurcates first at RePA = 23.85 (pitchfork bifurcation PA) breaking
the symmetry of the base–flow with respect to the x–axis, ∂Ωh. The oscillating mode B
then bifurcates from the x–symmetry–breaking pitchfork bifurcation at ReSHB = 24.63
through a secondary Hopf bifurcation (SHB). Notwithstanding the subcritical nature of
this bifurcation, which makes it unstable, such a bifurcated branch is fundamental for
the emergence of the self–sustained oscillation regime, through a backward bifurcation of
mode A (BA) at ReBA = 24.35. The sub–criticality of the system in the range ReBA <
Re < ReSPB leads to an hysteretic behaviour where either the steady mode A or the
oscillating mode B can dominate, depending on the initial conditions to which the system
is subjected. Figure 8-(a) shows the full weakly nonlinear map predicted by the normal
form (5.17)-(5.18) in the (Re, AR)–plane around the codimension-2 point. Lastly, as
shown in figure 8-(c), above ARC2

only the oscillating mode B, which settles into a
limit cycle via classic Hopf bifurcation (HB), exists. In this range, the self–sustained
oscillations regime is observed above a certain Reynolds number.
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Figure 8. (a) Weakly nonlinear map predicted by the normal form (5.17)-(5.18) in the
(Re, AR)–plane. Green and blue dotted lines indicate the linear marginal stability curves for
mode A and B respectively, as presented in §4.2. In the black region the steady mode A
prevails, while the oscillating mode B dominates in the wide grey region. A region of hysteresis,
highlighted in light grey shade, is found for AR smaller than ARC2 . (b) Bifurcation diagram as a
function of the Reynolds number for a fixed value of aspect ratio, AR = 6.5 < ARC2 . Dashed and
dot–dashed lines mean unstable branches, while solid lines denote stable branches. The vertical
red dotted lines represents the thresholds for the pitchfork bifurcation of mode A (PA), the
backward bifurcation of mode A (BA) and the secondary Hopf bifurcation of mode B (SHB).
The light gray shaded region corresponds to the hysteresis range of (a). (c) Bifurcation diagram
as a function of the Reynolds number for a fixed value of aspect ratio, AR = 7.5 > ARC2 . The
vertical red dotted lines represents the thresholds for the Hopf bifurcation for mode B.

6. Comparison with direct numerical simulations (DNS)

In this section the results derived in §5 via weakly nonlinear analysis are compared with
direct numerical simulations (DNS). The full nonlinear unsteady dynamics represented
by the system of governing equations (2.3)-(2.2) with its boundary conditions is solved
using the open–source code Nek5000, as described in §3.

In addition to the fluid governing equations, Nek5000 allows to easily introduce a
further advection–diffusion equation describing the dynamics of a passive scalar, Φ,

∂Φ

∂t
+ u · ∇Φ =

1

Pe
∆Φ, (6.1)

which enables us to reproduce the presence of two dyes continuously injected trough the



Impinging planar jets: hysteretic behaviour and self–sustained oscillations 17

Figure 9. Nonlinear map of figure 8-(a) for a specific value of aspect ratio in the region
characterized by the hysteretic behaviour, i.e. AR = 6.5. Cases investigated by performing direct
numerical simulations are indicated by symbols. The red diamond (Re = 24.55) correspond to
a case in which the existence of the hysteresis region has been checked using the same control
parameters, AR and Re, but different initial conditions, given by the final steady state or limit
cycle of the two closest simulations, whose Reynolds number have been increased or decreased
respectively, as sketched by the green arrows.

inlets, in order to visualize the instantaneous flow configuration (Bertsch et al. 2020a).
The Péclet number, Pe, appearing in (6.1) has been set to Pe = 100, a value which
ensures a good numerical stability and a satisfactory flow visualization at the same time
for all the explored cases. Concerning this passive scalar equation, Dirichlet boundary
conditions are imposed at the two inlets (Φ|y=− s

2
= 0,Φ|y= s

2
= 1) to reproduce the

injection of two different dyes, while outflow conditions are set at the outlets; no–flux is
allowed through the solid walls.

6.1. Regime comparison

In figure 9 the nonlinear map of figure 8-(a) for a specific value of aspect ratio in the
region characterized by the hysteretic behaviour, i.e. AR = 6.5, is recalled. Different
direct numerical simulations, covering the range of Reynolds numbers from the stable
region (Re < RePA = 23.85) to the region dominated by the oscillating mode B (Re >
ReSHB = 24.63) were performed. The investigated cases are indicated in figure 9 with
symbols. The results extracted from the DNS are presented in figure 10 and 11.

All the numerical simulations displayed in figure 10 were started from zero initial
conditions. Figure 10-(a) shows the steady–state obtained for Re = 22, which confirms
that the steady base–flow is stable for Re < RePA = 23.85, indeed no symmetry
breaking can be observed. For Re = 24, 24.2 and 24.4 (which lies in the hysteresis
range) we retrieved that the steady mode A first bifurcates via a pitchfork bifurcation.
The symmetry with respect to the x–axis is lost, the position of the stagnation point lies
below the x–axis of symmetry and the size of the recirculation regions differs on either
side of the x–axis of symmetry ∂Ωh. For Re > ReSHB = 24.63, i.e. Re = 24.7, 24.84, 25
and 27, only the self–sustained oscillation regime is observed.

In order to confirm the existence of the hysteretic behaviour found in §5.5.1, the
solutions obtained at large time for Re = 24.4 (asymmetric steady configuration) and
Re = 24.7 (limit cycle for the self–oscillations) are used as initial conditions for two
more simulations, where the Reynolds number is fixed to Re = 24.55 in both cases (filled
red diamond and green arrows in figure 9). The results of this numerical procedure are
given in figure 11. We clearly see in figure 11-(a) and (b) that depending on the initial
conditions imposed to the system, for this fixed value of Re = 24.55 within the hysteresis
region, both modes can emerge. Other simulations (not shown) performed in the upper
region of figure 8-(a), i.e. for Re = 25 and AR = 7.5 and 8, confirm the supercritical
nature of the Hopf bifurcation associated to mode B (HB).

Next, global linear stability and weakly nonlinear analysis are both compared with the
direct numerical simulations in terms of amplitude of modes A and B and oscillation
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Figure 10. Snapshots of the flow patterns in terms of dyes concentrations observed at large
time, (a)-(d) once the the steady state (stable base–flow or symmetry breaking for mode A)
is reached or, alternatively, (e)-(f) once the limit cycle for mode B is fully established, for
the various Reynolds numbers indicated by white squares in figure 9. The white dashed lines
represent the axes of symmetry characterizing the steady base–flow. The flow configuration for
Re = 24.55 is shown in figure 11.

Figure 11. Snapshots of the flow patterns in terms of dyes concentrations observed at large
time for AR = 6.5 and the same Reynolds number, Re = 24.55 (hysteresis region), but with
different initial conditions: (a) the new steady state (symmetry–breaking condition) obtained for
Re = 24.4 is used as initial condition; (b) a time-instant of the unsteady solution corresponding
to Re = 24.7 (limit cycle for mode B) is imposed as initial condition. Streamlines and arrows
are used to visualize the velocity fields associated with the steady and oscillating configurations
respectively.

frequency for the self–sustained oscillatory regime.

6.2. Frequency comparison

Figure 12-(a) shows that, near the threshold, the linear global stability analysis (LGS),
the weakly nonlinear analysis (WNL) and direct numerical simulation (DNS) agree well
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Figure 12. (a) Oscillation frequency, extracted from the y–velocity component at
(x, y) = (0.5, 0), versus Reynolds number for AR = 6.5. The solid black line indicates the
weakly nonlinear analysis (WNL). The dotted black line and plus signs represent the linear
global stability analysis (LGS). The dashed black line and circles are associated with the direct
numerical simulations (DNS) performed. (b) Amplitude of modes A and B extracted from DNS
and compared with the bifurcation diagram obtained from the WNL analysis for AR = 6.5.
Symbols and green arrows in (b) correspond to the ones introduced in figure 9 and are associated
to the DNS presented above.

and prescribe the correct oscillation frequency. However, if the LGS soon diverges from
the DNS, as extensively described in the literature (Barkley 2006), the WNL theory,
applied to the problem presented in this paper provides a wider range of Reynolds
numbers in which the model follows the DNS trend with a satisfactory agreement,
showing an error of 3% for Re = 40 against the 13.2% of the LGS. Additionally, it needs to
be underlined that the results shown in this section refer to an aspect ratio of AR = 6.5,
hence a double off–set (in terms of Re and AR) with respect to the codimension–2 point,
C2, is considered in the WNL curve of figure 12. Indeed, the precision of the asymptotic
expansion prediction increases as |Re − ReC2

| and |AR−ARC2
| decrease.

6.3. Amplitude comparison

In figure 12-(b) we compare the amplitude of mode A and B extracted from the DNS
with the ones prescribed by the WNL model. The total flow solutions in the steady and
oscillatory regimes evaluated via weakly nonlinear formulation read:

uAWNL = u0 +AuA1 + δuδ2 + αuα2 +A2uA
2

2 , (6.2)

uBWNL = u0 +
(
BuB1 e

iωt + c.c.
)

+ δuδ2 + αuα2 + |B|2u|B|
2

2 +
(
B2uB

2

2 ei2ωt + c.c.
)
. (6.3)

Specifying equations (6.2) and (6.3) for the y–velocity components, vA,BWNL, at the x–axis
of symmetry (y = 0), given the symmetries of the various terms, we have vA (x, 0)WNL =
AvA1 (x, 0) and vB (x, 0)WNL =

(
BvB1 (x, 0) eiωt + c.c.

)
. Selecting then the point x = 0.5,

used to normalize the global modes (vA1 (0, 5, 0) = 1 and vB1 (0.5, 0) = 1), we derive the
following simple expressions,

vA (0.5, 0)WNL = A, (6.4)

vB (0.5, 0)WNL = 2|B| cos (ωt+ ΦB), (6.5)

which allow us to easily compare the amplitudes A and |B| from the WNL model with the
ones extracted from the DNS, v (0.5, 0)DNS . Figure 12-(b) shows not only a qualitative
but also a quantitative agreement between DNS and WNL, which captures well the
hysteretic behaviour of the flow for AR < ARC2 (sufficiently close to ARC2).
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Figure 13. Variation of the Strouhal number, StB = fw/U , with the aspect ratio, AR = s/w,
for a fixed Reynolds number, Re = ReC2 = 22.65. Black solid line: weakly nonlinear analysis
(WNL). Black circles: direct numerical simulation (DNS). Inset: variation of StB with Re for
different AR according to the WNL model. For values of Re smaller than the WNL stability
boundary, the instability does not occur and no oscillations can be observed.

6.4. Evolution of the oscillation frequency with the aspect ratio

A linear dependence of the self–oscillations on the inverse of the spacing between the
jets, s, which highlights the importance of the distance s in the oscillatory phenomenon,
was observed in Bertsch et al. (2020a), who proposed the following scaling law,

f ∼ U

s
, (6.6)

where the slope, derived by fitting the experimental data, was seen to be approximatively
1/6, which is also consistent with the measurements made by Denshchikov et al. (1978) on
large scale facing jets in turbulent flow conditions. Given the definition of the Strouhal
number introduced in §4.2, St = fw/U , and the aspect ratio AR = s/w, the non–
dimensional form of the scaling law (6.6) reads

StB ∼
1

AR
, (6.7)

where the subscript B is used to denote the frequency associated with the oscillating
mode B. It follows that in our two–dimensional model, equation (6.6) translates in a
linear dependence of the Strouhal number on 1/AR. Moreover, according to such a law,
the variation of St with Re is not predominant.

In order to verify whether the evolution of the oscillation frequency in our 2D flow
behaves similarly to that of the 3D one studied in Bertsch et al. (2020a), we performed a
series of direct numerical simulations fixing Re, i.e. Re = ReC2

= 22.65, and varying AR
(> ARC2

). A quantitative comparison of DNS and the WNL model is shown in figure 13.
In this context, it is important to note that the parameter 1/AR in (6.7) naturally

appears in the weakly nonlinear formulation, which, indeed, prescribes a linear variation
of the dimensionless frequency with 1/AR, as displayed in figure 13. DNS results agree
well with the WNL model, that also provides a theoretical expression for the slope m
indicated in figure 13. In analogy with Bertsch et al. (2020a) and Denshchikov et al.
(1978), we retrieved a factor close to 1/6.
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Moreover, as shown in the inset of figure 13 (see also figure 12-(a)), the dependence of
the frequency on the Reynolds number is much weaker (at least in the first range of Re)
than the dependence on AR, which is in agreement with the scaling law (6.7).

7. Instability mechanisms: sensitivity analysis

The presence of a stationary (y,−y) symmetry–breaking bifurcation, as revealed by the
existence of the A mode analyzed in this paper bears a certain similarity with sudden
expansion flows, where the origin of the symmetry-breaking instability was found to
lie in the recirculation regions (Fani et al. 2012; Lashgari et al. 2014; Lanzerstorfer &
Kuhlmann 2012). The physical mechanism associated to the symmetry breaking is often
referred to as a Coandă effect, where the shear layers surrounding the recirculation regions
are deflected towards one of the two confining walls.

The present flow however is characterized not only by two, but rather by four symmetric
recirculation regions surrounding an hyperbolic stagnation point. Note that the existence
of four recirculation regions invariant under two axial symmetries and one central symme-
try suggests also the possibility for an (x,−x) symmetry breaking, akin to the buckling of
two colliding jets at their meeting point. The presence of an hyperbolic stagnation point is
also known to give rise to the so-called hyperbolic instability (Friedlander & Vishik 1991;
Lifschitz & Hameiri 1991), which was found to contribute in the destabilization of arrays
of vortices (Godeferd et al. 2001; Sipp et al. 1999; Ortiz & Chomaz 2011). This instability
mechanism, which is best understood in the short-wave and inviscid asymptotic limits,
is however known to give rise to spanwise disturbances which cannot be active within
the present 2D framework.

Turning our attention now to the self–sustained oscillatory global mode B, we note that
the simple scaling of its intrinsic frequency with the physical parameters observed in the
three-dimensional microfluidic experiments and numerical simulations of Bertsch et al.
(2020a) does not yet point clearly to a physical governing mechanism. As tentatively
argued in Bertsch et al. (2020a), the oscillatory nature of this instability suggests the
presence of a feedback mechanism, as the ones investigated in Villermaux & Hopfinger
(1994); Villermaux et al. (1993). This suggests several candidates, such as the presence
of a pocket of absolute instability, or a global pressure feedback. The perturbation field
numerically extracted in Bertsch et al. (2020a) and qualitatively retrieved in the present
paper, shows a sinuous structure in the left and right outlet channels which is reminiscent
of two synchronized sinuous shear instabilities. This suggests that the Kelvin-Helmholtz
instability of the confined jet profiles prevailing in the outlet channels participates in the
self-sustained oscillation process.

We have indeed determined the dispersion relation of the streamwise velocity profiles
pertaining at different streamwise stations (x ∈ [1, 10]) in the side arm for AR =
ARC2

= 6.98 and Re = ReC2
= 22.65 (see figure 15-(b)). We have found that the

sinuous mode was indeed unstable in the region 1 < x < 5 (see Appendix C for more
details), while the varicose mode remained damped. This indicates that in this region,
the shear is sufficiently intense for the Kelvin–Helmholtz instability to overcome the
conjugate stabilizing effect of confinement and viscosity. Additionally, we found that the
most unstable wavelength was close to 9, in visual agreement with figure 5-(d), while the
associated frequency was 0.1, also in good agreement with the global mode frequency.

However, in order to translate into a self–sustained global instability, this shear layer
instability would either need to be of absolute nature, possibly because of the presence
of near-by walls, known to enhance absolute instability in confined shear flows (Healey



22 A. Bongarzone, A. Bertsch, P. Renaud and F. Gallaire

2009; Juniper 2006; Rees & Juniper 2010; Biancofiore & Gallaire 2011). As explained
in Appendix C, our calculations however showed that the instability remains convective
in the entire unstable region x ∈ [1, 5]. Another source of strong shear is represented
by the two facing y-velocity jets issuing from the inlets (see figure 15-(a)). Indeed, even
if iso-thermal jets are usually known to be convectively unstable, the present geometry
differs from a classical free jet. The two jets face each other and collide, slowing down
while redirecting fluid towards the outlets. In this interaction region, the flow is however
far from weakly non-parallel and the application of local stability analysis is therefore
questionable.

Global instability of shear flows in open flows has indeed been historically studied
under the parallel flow assumption, where the local linear stability theory is applied to
determine whether the flow is absolutely unstable and hence a global instability is to
be expected (Huerre & Monkewitz 1985). Further progresses has been made extending
the analysis to spatially developing (Huerre & Monkewitz 1990; Chomaz et al. 1988)
with the introduction of the WKBJ approximation for weakly non–parallel flows, which
extends the domain of validity of the local analysis and provides fair agreement when
compared with the linear global stability analysis (Siconolfi et al. 2017; Viola et al.
2016). Meanwhile, global stability analysis (sometimes called bi-global (Theofilis 2011))
has become increasingly popular in recent years, thanks to the large memory capabilities
of modern computers.

As mentioned above, the flow is strongly nonparallel in both the x– and y–directions
in the central interaction region of the X–junction, which jeopardizes the chances to
apply successfully a weakly non parallel approach to determine the physical mechanism
governing this oscillatory instability. We thus propose to follow a different approach to
investigate the nature of the instability.

The approach proposed in this section makes use of the properties of the adjoint
eigenfunctions associated to the direct eigenmodes and it is formally known as sensitivity
analysis. Following Giannetti & Luchini (2007), Chomaz (2005) popularized the definition
of the wavemaker region as the region of the flow which is predominantly active in
sustaining the global instability. He demonstrated that the wavemaker region can be
identified as the overlapping region between the direct and adjoint global eigenvectors.
Giannetti & Luchini (2007) indeed demonstrated that the concept of wavemaker identifies
regions of the flow where the presence of a local instantaneous feedback produces the
strongest drift of the leading eigenvalue. The wavemaker region has then been successfully
used to analyze the canonical circular cylinder wake flow (Marquet et al. 2008; Giannetti
et al. 2010; Camarri & Iollo 2010; Giannetti et al. 2019). Meliga et al. (2009b) applied
the theory to the wake of solid disks and spheres, while Ledda et al. (2018) made use of
the wavemaker definition in the understanding of the suppression of von Kármán vortex
streets past porous rectangular cylinders.

Here we apply the theory of sensitivity analysis in order to investigate both the nature
of the steady symmetry–breaking mode and to identify the physical mechanism from
which the self–sustained oscillations originate.

7.1. Core of the steady symmetry–breaking instability

As mentioned, the wavemaker region is defined by the overlapping region of the direct
and adjoint global modes. Using the results from the global stability analysis presented
in §4.2, the direct and adjoint velocity fields for the steady mode A, here analyzed and
shown in figure 5 and 6, are used to build the wavemaker, defined as the product of the
direct and adjoint velocity magnitudes ||ûA1 || · ||û

A†
1 ||.
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Figure 14. Structural sensitivity to a local feedback of the steady global mode A for
Re = ReC2 = 22.65 and AR = ARC2 = 6.98. Color map: wavemaker region. Black lines:
streamlines extracted from the steady base–flow, u0. Red dashed lines: recirculation bubble
edges.

The resulting wavemaker region for Re = 22.65 and AR = 6.98, normalized by its

maximum value, max
(
||ûA1 || · ||û

A†
1 ||
)

is displayed in figure 14, together with streamlines

extracted by the steady base–flow and the edge of the four symmetric recirculation
bubbles. The stagnation point in x = 0 and y = 0 is clearly highlighted by the streamlines.
The spatial distribution of the wavemaker is concentrated in the origin of the fluid
domain, perfectly coincident with the stagnation point. As shown in §6, such instability
leads to an off–set of the stagnation point with respect to the x–axis of symmetry. While
quite similar to symmetry breaking bifurcations in expansion flows, the physical origin
of the A-instability lies therefore probably here more in the structural instability of
the stagnation point than in a Coandă effect where the side jets are attracted towards
one wall. Broadly speaking, as one jet prevails over the other, the stagnation point
is translated in either directions along the y–axis, the streamlines are bent with the
dominated jet that has less space to curve towards the outlet channels. The size of the
recirculation regions is readapted to maintain a steady configuration.

Note that a buckling–like instability of the colliding symmetric jets, in analogy with
the classic buckling typical of structural mechanics, would intuitively lead to a steady
bending of the jets which would displace the stagnation point along the y = 0 axis
towards a positive or negative x 6= 0 offset. Whether the second steady mode C can be
reasonably interpreted as such is discussed in Appendix B.

7.2. Physical mechanism behind the origin of the self-sustained oscillatory mode B

7.2.1. Structural sensitivity: wavemaker region

Here we apply the same technique to the oscillatory instability. The wavemaker for
mode B is thus given by ||ûB1 || · ||û

B†
1 ||. Figure 15-(c) displays as a color map the

wavemaker region for Re = 22.65 and AR = 6.98, normalized by its maximum value.
From the observation of the wavemaker region, it can be deduced that, as expected, the
origin of the oscillations is located in the central portion of the domain, where the two
facing jets strongly interact with each other. Moreover, the structure of the wavemaker
associated with the oscillating global mode B coincides for all the aspect ratio values
which have been checked, i.e. AR ∈ [6, 20]. Further progress in understanding the physical
mechanism of this instability can be made analyzing the vorticity field and the local
maximum shear. The local x– and y–velocity profiles, independently considered as in
the standard local and parallel linear theory and shown in figure 15-(a) and (b), have
been analyzed and the corresponding loci of maximum shear, taken section by section, are
plotted as red dashed lines in figure 15-(c). It is seen that the local maximum shear related
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Figure 15. Structural sensitivity to a local feedback of the oscillating global mode for
Re = ReC2 = 22.65 and AR = ARC2 = 6.98. (a) and (b) y– and x– base–flow velocity
profiles, v0 and u0, independently considered as in the classic local parallel theory. (c) Color
map: wavemaker region. White circles: maximum value of the normalized wavemaker. Black
contours: base–flow vorticity field. Dashed red line: maximum shear of the y– and x– base–flow
velocity profiles, v0 and u0 displayed in (a) and (b) respectively.

to the local y–velocity profiles follows surprisingly well the region of maximum values of
the wavemaker. Additionally, the wavemaker presents four symmetric maximum intensity
points (white circles in figure 15-(c)) which approximately coincide with the intersections
of the local maximum shear for the y– and x–velocity profiles.

As a final comment, we can thus argue that, while the non–parallelism of the flow in
the central region precludes the use of the classic local and parallel analysis to compare
the present study and to firmly confirm the Kelvin–Helmholtz mechanism as the origin
of the oscillatory instability, figure 15 suggests that the regions of maximum shear and
the interaction of various shear layers play an important role in the physical mechanism
engineering the global self-sustained oscillation.

7.2.2. Sensitivity to base–flow modifications

Let us now consider the sensitivity analysis to arbitrary and small–amplitude base–
flow modifications, δu0. In the linear global stability framework, the parameter that
defines if a mode is stable or unstable for a certain combination of control parameters,
i.e. Reynolds number, is the growth rate, σ. We thus focus on the sensitivity of the growth
rate associated with the global mode B, ∇u0σB , which is a real quantitiy expressed as,

∇u0σB = −Re
((
∇u0
· ûB1

)H · ûB†1

)
︸ ︷︷ ︸

∇u0,T
σB

+ Re
(
∇u0

ûB† · uB∗1

)︸ ︷︷ ︸
∇u0,P

σB

, (7.1)

where here < stands for the real part of the complex vector field, H designates the
transconjugate, while the star ∗ denotes the complex conjugate. For a complete and
detailed description of the method see (Bottaro et al. 2003; Marquet et al. 2008). Two
different physical interpretations are inherent in the two terms appearing on the right
hand side of (7.1) (Marquet et al. 2008). The first term, denoted by ∇u0,T

σB , represents
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Figure 16. Sensitivity of the growth rate σB to base–flow modification for Re = ReC2 = 22.65
and AR = ARC2 = 6.98. (a) Sensitivity function to modification of the production, ∇u0,P σB .
(b) Sensitivity function to modification of the transport, ∇u0,T σB . Filled contours: magnitude
of the two real vector velocity field. Red arrows: vector fields orientation.

the sensitivity of the growth rate σB to modifications of the transport, since it originates
from the transport of the perturbations by the base–flow, ∇ûB1 · u0. The second term,
∇u0,P

σB , expresses the sensitivity to production, as it comes from the production of the
perturbation by the base–flow, ∇u0 · ûB1 (see Marquet et al. (2008) for further details).
An expression analogous to (7.1) can be derived for the sensitivity of the oscillation
frequency, where the imaginary part of the complex vector field is considered. Marquet
et al. (2008) argued that this distinction between transport and production mechanism
identified from the sensitivity analysis is directly connected to the concept of convective
and absolute instability adopted in the local stability theory, where the competition of
transport and production mechanism defines the global behaviour of the flow (Huerre &
Monkewitz 1990).

The sensitivity of the growth rate associated with the oscillating global mode B, σB ,
to modification of production and transport is shown in figure 16-(a) and (b) respectively.
The magnitude of the two different sensitivity fields is similar, meaning that the two
mechanisms are equally important. However, an interesting aspect that can be clearly
observed in figure 16 is the decoupling of the directions in which the two mechanism
mainly act. Indeed, the production mechanism is essentially located in the facing jets and
in the y–flow direction (pointing towards the center), while it vanishes moving away from
the jets region. On the other hand, the transport mechanism, whose maximum intensity
is also close to the jets region, mainly acts on the x–direction of the output channels.
In other terms, if an increase of the base–flow velocity in the jets region and oriented
in the y–direction is considered, this modification will contribute to a destabilization
via production mechanism (figure 16-(a)), but it will involve the transport mechanism
only weakly, since the two directions of action are almost decoupled. In the same way,
considering the x–direction, if one considers a decrease of the base–flow velocity in the
central region (or alternatively an increase in the size of the recirculation regions), then
such a modification will destabilize the flow via transport mechanism, but it will not play
together with the production mechanism because of the mentioned decoupling.

8. Different inlet velocity profiles: plug flow

We conclude our analysis examining the influence of a different inlet velocity profile,
by specifically focusing on a plug flow, inspired by Pawlowski et al. (2006). In this study,
the authors perform a detailed stability analysis, which provides a wide–ranged stability
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Figure 17. Stability map taken from figure 10 of Pawlowski et al. (2006). White triangles
and circles are the values that we extracted manually from their curves. Inset: our weakly
nonlinear map for the case of a uniform inlet flow, where our definition of AR is adopted in
the y–axis. Dark green and blue dotted lines in the inset indicate the linear marginal stability
curves obtained from our calculation for mode A and B respectively. Black lines in the inset
represent our weakly nonlinear stability boundaries, as described in §5. The light gray shaded
region in the inset corresponds to the hysteresis. The green filled circle indicate the position of
the codimension–2 point reported in Pawlowski et al. (2006), while the red filled circle is the
codimension–2 point obtained from our calculation.

map in the (Re,AR)–parameter space. The very same steady symmetry–breaking and
oscillatory instabilities, as well as the existence of a codimension–2 point, were found,
suggesting that the inlet profile does not seem to qualitatively influence the nature
of these instabilities. However, from a more quantitative view point, the instability
thresholds are significantly affected when a fully developed flow is replaced by a plug
flow. Interestingly, despite the fact that the overall nature of the bifurcation nature does
not change when varying the inlet profile, Pawlowski et al. (2006) did not report the
presence of any hysteretic behaviour. In the following, we apply the weakly nonlinear
theory outlined in section §5 to the case of the plug inlet flow studied by Pawlowski et al.
(2006) and we briefly discuss their results in relation with our analysis.

In figure 17, we propose a zoom of their stability map in the neighborhood of the
codimension–2 point. We extracted manually values, shown as white triangles and circles
in figure 17 (in both the main figure and inset), from their stability curves (note that
their aspect ratio is defined as 1/AR = w/s). Clearly, the wide range of Re and AR and
the large thickness of the lines displayed in figure 10 of Pawlowski et al. (2006) make
the extraction procedure only approximate. We note that the value of the codimension–2
point reported in the main text, C2 = (11.2, 13.33), by Pawlowski et al. (2006) does
not seems to match the value extracted from their plot, which is instead in fairly good
agreement with our calculations, for which C2 = (20.9, 10.53). If our marginal stability
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Figure 18. Bifurcation diagram: y–position of the stagnation point versus Re. The black solid
and dashed lines correspond to the stable and unstable branches of the bifurcation diagram
shown in figure 11 of Pawlowski et al. (2006), calculated following the path of increasing Re (AR
is fixed to 8). The light gray shade region is the hysteresis predicted by our WNL model. Symbols
indicate the DNS results (see figure 12-b) for the notation). A sketch of the phase portrait is given
for each regime: 1 stable symmetric base–flow, 2 steady asymmetric configuration, 3 hysteresi
and 4 oscillating regime.

curve for mode A (dark green dotted lines in the inset) matches very well their result,
this is not the case for the curve associated to mode B (blue dotted line in the inset) for
AR < ARC2 . Indeed, the white circles are obtained from the linear stability analysis of
the bifurcated steady asymmetric state, while our blue dotted line is evaluated from the
stability of the steady symmetric base–flow. We thus apply the WNL analysis around C2

and the corresponding weakly nonlinear stability boundaries are displayed in the inset as
black solid lines. First we notice that the WNL analysis based on the symmetric base–flow
captures their threshold for the unsteady mode B correctly. Furthermore, analogously
to the fully developed flow case, the WNL approach detects an hysteresis region, not
described in Pawlowski et al. (2006). We therefore performed DNS to confirm the WNL
prediction.

In figure 18 the y–position of the stagnation point normalized by the aspect ratio,
ysp/AR (AR = 8), is used to characterize the bifurcation diagram. As in §5, four regions,
denoted here by numbers, can be identified and the associated phase diagrams (amplitude
of mode |B| vs. A) are shown for completeness, following Kuznetsov (2013). The black
solid and dashed lines correspond to the stable and unstable branches described in
figure 11 of Pawlowski et al. (2006), while the light gray shaded region is the hysteresis
detected by our WNL model. Symbols correspond to our DNS. Pawlowski et al. (2006)
started from Re = 1 and increased Re progressively. The reason they could not detect
hysteresis is intrinsic to their continuation algorithm, which describes the transition from
region 2 to region 4 (see figure 18) following the same branch. In other words, their initial
conditions in region 3 (hysteresis) are taken from region 2 (steady asymmetric state) and
therefore always lie in the lower right part of the phase diagram 3. Consequently, the
final solution converges to the steady asymmetric configuration A. Indeed, the left upper
part of the phase portrait 3 can be explored only by considering progressive decreases
of Re from region 4 (oscillating regime) to 3, as our DNS, in good agreement with the
WNL model prediction, could confirm. Hence, the WNL model adds new informations,
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at least in the region of the parameter space close to the codimension–2 point, to the
thorough stability analysis proposed by Pawlowski et al. (2006).

9. Conclusion

In the present paper we investigated different physical mechanisms arising in a two–
dimensional fluidic oscillator with two impinging jets, in a so–called two–dimensional X–
junction. The tools of the linear global stability analysis were used to identify different
global modes, whose stability properties depend on the two main control parameters, the
Reynolds number, Re, and the aspect ratio, AR. An oscillating mode that produces self–
sustained oscillations qualitatively analogous to the ones observed in three–dimensional
fluidic cavities (Bertsch et al. 2020a) was retrieved. The origin of such a phenomenon
appears therefore as mainly two–dimensional and due to the interaction of the two facing
jets.

In a certain range of aspect ratios, when the gap length, s, separating the two inlets
approaches the inlet width, w, the unsteady mode is seen to globally interact with a
steady symmetry–breaking instability. A weakly nonlinear analysis (WNL), based on the
multiple scale technique and showing how the system may present hysteretic behaviours
depending on the initial conditions, was formalized. The predicted normal form describes
the nonlinear interactions between global modes A (steady) and B (oscillating) and
reduces the full dynamics to a low–dimensional model, as typical of WNL formulations.
For codimensions larger than one, as in the present case, which displays a codimension–
2 point, the normal form often predicts the complex system behaviours successfully
(Crawford & Knobloch 1991; Meliga et al. 2009a; Zhu & Gallaire 2017). Indeed, a
quantitative comparison of our WNL results against direct numerical simulation (DNS),
in terms of oscillation frequency and mode amplitudes, confirms the validity of the WNL
analysis and, in particular, the existence of a narrow region of hysteresis for AR < ARC2

and ReBA < Re < ReSHB .
Furthermore, in analogy with the three–dimensional flow studied by Bertsch et al.

(2020a), the oscillation frequency associated to unsteady instability was seen to be
inversely proportional to the distance separating the two inlets, s, or, in non–dimensional
terms, to the aspect ratio, AR.

In principle, a steady symmetry–breaking condition, as the one represented by the
global mode A, and the associated hysteresis, similar to that here described in 2D, is
expected to be retrieved in three–dimensional cavities for proper geometrical parameters,
i.e. for a size of the perpendicular z–direction sufficiently larger than the distance s.
Nevertheless, the eventual narrowness of the hysteresis region in the control parameter
space could make it hard to be experimentally detected.

A linear sensitivity analysis and the definition of the wavemaker region were then
systematically applied in order to explore the origin of the various instabilities observed.
The core of the steady instability associated to mode A, which breaks the base–flow
symmetry with respect to the x–axis, was shown to be spotted in the hyperbolic stagna-
tion point. We showed how the self–sustained oscillatory regime, also observed in three–
dimensional flow configurations (Bertsch et al. 2020a), was relying on shear instabilities.
The structural sensitivity of the unsteady mode and its accurate examination allowed us
to identify the Kelvin–Helmholtz shear instability, located in the jets interaction region,
as the heart of the physical mechanism behind the self–sustained oscillatory regime.
Lastly, we examined the effect of a different inlet velocity profile, e.g. a plug flow, in
analogy with Pawlowski et al. (2006). Similarly to the case with a fully developed inlet
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Re AR Mesh n1 n2 n3 n4 ntot nd.o.f. λA λB

M1 145 115 75 35 240251 1098685 −2.6e−5 + i 2e−15 3.3e−6 + i 0.10157
M2 150 120 80 35 257110 1175053 −2.5e−5 + i 7e−16 −7.5e−8 + i 0.10157

22.65 6.98 M3 160 130 85 40 307080 1401813 −2.6e−5 + i 9e−16 −8.9e−7 + i 0.10157
M4 175 145 95 45 383395 1747633 −2.6e−5 − i 1e−16 −3.3e−6 + i 0.10157
M5 200 160 105 50 475963 2166624 −2.6e−5 − i 3e−17 −3.3e−6 + i 0.10157

Table 1. Eigenvalue convergence associated with the computational domain presented in
figure 2. Tolerance on the real part of the eigenvalues λA and λB , associated to global modes A
and B, is set to tolRe(λ) = 5e−5. When |Re(λ)| < tolRe(λ), the modes are considered marginally
stable for such combination of Reynolds number, Re, and aspect ratio, AR, which will define
a codimension–2 point (ReC2 , ARC2). Mesh M1 ensures the convergence of the eigenvalue
computations in a range of AR and Re explored, however mesh M5 must be adopted to guarantee
an acceptable convergence in the weakly nonlinear analysis (see Table 2). Lout is fixed to 70.

flow, the weakly nonlinear analysis could detect hysteresis in a narrow region of the
parameter space, whose existence was not discussed by Pawlowski et al. (2006). The
physical nature of the instabilities remained the same, but their thresholds can differ
significantly, calling for a sensitivity analysis of the inlet velocity profile. Indeed, in many
practical situations, the inlet profile is neither fully developed, nor uniform, but rather
lies in an intermediate case.
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Appendix A. Convergence analysis for the eigenvalue calculations
and the amplitude equation coefficients

The convergence analysis for the eigenvalue calculations presented in §4 is shown in
table 1 for five different meshes M1–M5, which differ by the vertex densities ni in the
various sub–domains displayed in figure 2.

A similar convergence analysis for the nonlinear coefficients of the normal form (5.17)-
(5.18) derived in §5, is provided in table II. As shown in table 1, mesh M1 is already
excellent for the linear eigenvalue problem. Moreover, the structural sensitivity presented
in §7 highlights the fluid domain region in which all the physical mechanisms occur,
suggesting that the length of the computational domain could be reduced from Lout =
70w up to ≈ 30w, without any influence on the eigenvalue calculation (numerically
verified). However, the weakly nonlinear problem and the calculation of the coefficient
of the normal form requires a finer mesh and an adequate domain length in order to get
an optimal convergence. Table 2 shows that refining from mesh M4 to M5 the major
relative error (coefficient ηA) is less than 1%. Note that this is the numerical precision
of the calculation performed, which is not linked to the convergence of the asymptotic
expansion, whose precision increases as |Re − ReC2 | and |AR−ARC2 | decrease.

The expression of the various normal form coefficients are provided in the following:

ζA = − < q̂A†1 ,
(
DARC2

q̂A1 + CARC2

[
q̂A1 , q̂

δ
2

])
>, (A 1)
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Mesh ζA ηA µA χA

M1 1.22 -0.257 0.157 1.01
M2 1.22 -0.256 0.157 1.01
M3 1.22 -0.256 0.157 1.01
M4 1.22 -0.257 0.157 1.01
M5 1.22 -0.257 0.157 1.01

ζB ηB µB χB

M1 2.67 + i 0.0499 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M2 2.67 + i 0.0438 -0.737 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M3 2.67 + i 0.0505 -0.737 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M4 2.67 + i 0.0489 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963
M5 2.67 + i 0.0490 -0.738 + i 1.00 0.410 + i 0.0014 0.164 - i 0.0963

Table 2. Values of the amplitude equation coefficients for global mode A and B corresponding
to the case of a fully developed inlet velocity profile and calculated for different mesh M1–M5.
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where, given two generic vectors a and b, CARC2
[a,b] =

{
CARC2

(a,b) , 0
}T

,

DARC2
a =

{
∆ARC2

a, 0
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and Cα [a,b] = {Cα (a,b) , 0}T , DαARC2
a =

{
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a, 0
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,

while Gαq̂A,B1 =
{
∇αp̂A,B1 ,∇Tα ûA,B1

}T
. The star ∗ denotes the complex conjugate.

Appendix B. Flow behaviour at higher Reynolds numbers

In §4.2 the existence of a second steady global mode (denoted by C), which, from
the global stability analysis, appears to be unstable for Re = 41.5, for AR = 6.5 (see
figure 19-(c)), was mentioned. When the threshold for mode C is met, global modes
A and B are both unstable. This evidence does not justify either the application of
the linear stability tools or the weakly nonlinear analysis (the corresponding thresholds
are too far from each other). Nevertheless, some information can still be extracted by
looking at the DNS results for higher Reynolds number, i.e. Re = 50, and, in particular,
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Figure 19. Snapshot of the unsteady flow configuration in terms of dyes concentrations for
Re = 50 and AR = 6.5. Two slices, at x = −5 and x = +5 are extracted and used to plot the
magnitude of the velocity field (b). (c) Marginal stability curves for global mode A, B, and C
as a function of Re and AR (as in figure 4). LS: Linearly Stable. LU: Linearly Unstable. Red
circle: DNS parameters for the present case.

at the spatial structure of this mode. Figure 19-(a) shows the flow configuration for
Re = 50 and AR = 6.5. As can be observed, in figure 19-(b), where the magnitude of
the velocity field is plotted for two symmetric slices at coordinates x = −5 and x = +5,
for such combination of control parameters, the symmetry of the flow (in terms of field
magnitude) with respect to the y–axis is lost.

It can be argued that the cause of such a behaviour is the second steady mode, C, which
results to be unstable, with growth rate σC = 0.016 (and frequency ωC = 0), for the DNS
parameters here presented. Figure 20-(a) and (b) displays the spatial structure of the x–
and y–velocity components associated with the mode. The eigenfunctions for ûC1 and v̂C1
exhibits the same symmetry properties characterizing the oscillating modeB (see figure 5-
(b) and (d)). However, the steady nature of this mode leads to a double steady symmetry–
breaking condition (both axes of symmetry). The associated wavemaker region, computed
as described in §7, is shown in figure 20-(c). The overlapping region highlighted by the
structural sensitivity appears to be approximately localized at the boundaries of the
recirculation regions. The nature of this instability could be reasonably classified as a
buckling–like instability, where the symmetric configuration with two facing jets, above
a certain critical Reynold number, which represents a measure of the jet intensities,
becomes unstable and the jets tend to bend towards opposite directions, as clearly shown
in figure 20-(d). The shape and size of the four recirculation regions are then readapted
to the new steady configurations.

In the recent three–dimensional experimental and numerical investigation proposed
by Bertsch et al. (2020a) for straight output channels, as the two–dimensional one
analyzed in the present paper, the self–sustained oscillatory regime, observed in a cer-
tain range of Reynolds numbers, is seen to be strongly altered as Re is increased
(Re ≈ 100 or higher). In particular, the two facing jets tend to suddenly switch
left or right (and vice versa) and to keep that position steadily for a while. Fast
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Figure 20. Spatial structure of the x– and y–velocity components associated with the direct
global mode C for Re = 50 and AR = 6.5, for which the base–flow is marginally stable.
(a) x–velocity component. (b) y–velocity component. (c) Color map: structural sensitivity to a

local feedback of the steady global mode C, expressed as ||ûC1 || · ||ûC†1 || and normalized by its
maximum value. Black contours: magnitude of the base–flow field. Red dashed lines: boundaries
of the recirculation bubbles. (d) Streamline associated with the sum of the steady base–flow
and the steady unstable mode C. A fictitious amplitude of 0.25 is imposed to the perturbation
in order to get a good visualization of the streamlines modification. Red solid lines: axes of
symmetry.

oscillations are simultaneously present and sometimes the jets switch side. The existence
of an analogous steady symmetry breaking condition in the three–dimensional problem
is in principle expected and its strong nonlinear interaction with the self–sustained
oscillations for high Reynolds numbers could hypothetically and qualitatively justify the
flow behaviour shown in Bertsch et al. (2020a) (see associated supplemental material at
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202).

Appendix C. Temporal linear stability of the local velocity profiles in
the lateral channel

The wavemaker analysis proposed in section §7 suggests that the Kelvin–Helmholtz
(KH) mechanism play an important role in the oscillatory instability. Nevertheless, the
KH instability has an inviscid origin, while the low Reynolds numbers encountered in
this flow suggest that viscous effects could be dominant and consequently that they could
inhibit the KH instability. In this appendix, we propose a temporal linear stability of the
local velocity profiles in the lateral channel (see figure 15-(b)), which highlights that the
KH mechanism is actually active in the underlying process.

If we assume that the steady base–flow in the right (or left, symmetric base–flow)
output channel is locally parallel, i.e. we assume that the y–steady base–flow velocity
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Figure 21. Temporal analysis of the x–velocity profiles shown in figure 15-(b) and corresponding
to Re = ReC2 = 22.65 and AR = ARC2 = 6.98. Left plot: frequency −ω vs. wavenumber k.
Right plot: growth rate σ vs. wavenumber k. The maximum growth rate is found for x = 2 and
correspond to k ≈ 0.71 (wavelength ≈ 8.8) and to an oscillation frequency ω = 0.101.

component is zero and the x–component depends only on y, u0 = {u0 (y) , 0}T , then we
can tentatively apply the parallel stability theory. Linearizing the Navier–Stokes equation
around the locally parallel base–flow and using the ansatz, u (x, y, t) = û (y) ei(kx−λt)

and p (x, y, t) = p̂ (y) ei(kx−λt), with k spatial wavenumber, we obtain the following linear
system,

0 = ikû+
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∂y
, (C 1)

−iλû = −iku0û− v̂
∂û0
∂y
− ikp̂+

1
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û, (C 2)

−iλv̂ = −iku0û−
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∂y
+

1

Re

(
−k2 +

∂2

∂y2

)
v̂, (C 3)

subjected to no–slip boundary condition at the upper and lower walls. The system above,
formally equivalent to the Orr–Sommerfeld equation expressed in primitive variables,
reduces to a generalized eigenvalue problem in λ (the real wavenumber k is an imput),
whose temporal stability associated with the base–flow for each x–slice is studied numer-
ically using a validated Chebyshev pseudo–spectral code. A one–dimensional grid in the
y–direction made of 100 collocation points ensures convergence for the present case. The
main results are shown in figure 21.

We observe that there exist a spatial region, approximatively between x = 1 and
x = 5 in which the local profiles are temporally unstable. Interestingly, the maximum
growth rate, obtained for x = 2, is characterized by a spatial wavenumber k ≈ 0.7,
which corresponds to a wavelength ≈ 9, in good agreement with the one observed in
our oscillatory global mode (see figure 5-(d)). Furthermore, the associated oscillation
frequency is ω = 0.1, value which match well the global frequency. Lastly, the local
temporal analysis predicts a sinuous mode (not shown here), while varicose modes are
always stable, in agreement with global observations again.

A similar analysis can be repeated for the jet profiles selected along the y–axis (fig-
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ure 15-(a)). These profiles are also found to be temporally unstable, but the interpretation
of the results in terms of wavenumber and frequency is far from being trivial, since the
features of the instability are clearly visible only in the lateral output channels.

We then performed a spatio–temporal instability analysis, where λ and k are both
complex quantitites, but we found that the pocket of temporal instability is associated
to a convective instability (results not shown here).

As stated in §7 and highlighted by the wavemaker (figure 15-(c)), the instability
mechanism seems to be intrinsically global and due to the interaction of multiple shear
layers (jets and horizontal flows), which communicate in the central region of the domain,
where the flow is strongly non–parallel. For all these reasons, we believe that the
employment of the classic local theory is not legit in our case. Nevertheless, the temporal
analysis proposed in this appendix, together with consideration about the location of the
maximum shear made in §7, shows that the KH instability is active and that it could
play a relevant role in the instability mechanism, despite the potentially high viscous
effects.
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