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Abstract

The nonlinear decay of oscillations of a liquid column in a U-shaped tube is investigated within

the theoretical framework of the projection method formalized by Bongarzone et al. (2021) [1].

Starting from the full hydrodynamic system supplemented by a phenomenological contact line

model, this physics-inspired method uses successive linear eigenmode projections to simulate the

relaxation dynamics of liquid oscillations in the presence of sliding triple lines. Each projection is

shown to eventually induce a rapid loss of total energy in the liquid motion, thus contributing to its

nonlinear damping. A thorough quantitative comparison with experiments by Dollet et al. (2020)

[2] demonstrates that, in contradistinction with their simplistic one-degree-of-freedom model, the

present approach not only describes well the transient stick-slip dynamics, but it also correctly

captures the global stick-slip to stick transition, as well as the residual exponentially decaying

bulk motion following the arrest of the contact line, which has been so far overlooked by existing

theoretical analyses but is clearly attested experimentally. This study offers a further contribution

to rationalizing the impact of contact angle hysteresis and its associated solidlike friction on the

decay of liquid oscillations in the presence of sliding triple lines.
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I. INTRODUCTION

A. Linear contact line models for partial wetting conditions

Liquid sloshing constitutes an archetypal resonator system in fluid mechanics which some-

times represents a critical issue in mechanical engineering and daily life [3, 4]. It is therefore

crucial to understand the associated damping, as this plays a fundamental role in the miti-

gation of the maximal wave amplitude response in resonant conditions [5, 6].

Originally the natural frequencies of liquid oscillations in closed basins were derived in

the potential flow limit [7], while the linear viscous dissipation generated at the free surface,

at the solid walls and in the bulk was typically accounted for by a boundary layer approx-

imation [8–10]. This classical theoretical approach is built on the simplifying assumption

that the free liquid surface, η, intersects the lateral wall orthogonally and the contact line

can freely slip at a velocity ∂η/∂t with a constant zero slope,

∂η

∂n
= 0 free-end edge condition, (1)

where ∂/∂n is the spatial derivative in the direction normal to the lateral wall. These

hypotheses are acceptable for the modelling of gravity-dominated waves in moderately large-

size containers, i.e. when capillary effects are negligible [11–14], but become questionable

when considering smaller-scale containers for which additional dissipations sources originate

in the vicinity of the meniscus region, whose dynamics is the central topic of this work.

With a focus on different contact line conditions, Benjamin & Scott (1979) [15] and

Graham-Eagle (1983) [16] have computed semi-analytically the natural frequencies of liquid

oscillations whose contact line is instead fully pinned at the brim of the container,

∂η

∂t
= 0 pinned-end edge condition, (2)

while the interface slope, ∂η/∂n, is let free to vary. In this case, theoretical predictions

have provided estimations of the system dissipation in better agreement with dedicated

experiments [17–23]. Indeed, with the contact line being fixed, the overall dissipation is

ruled by that occurring in the fluid bulk and in the Stokes boundary layers at the bottom

and at the solid lateral walls, where the fluid obeys the no-slip condition.

An intermediate boundary condition that assumes a linear relation between the contact
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line speed and the slope was proposed by Hocking (1987) [24],

∂η

∂n
= M

∂η

∂t
Hocking condition, (3)

with a proportionality constant, sometimes referred to as mobility parameter M [25]. Ac-

cording to such a relation, the limiting values M → 0 and M → ∞ would correspond,

respectively, to free-end and pinned-end edge contact line conditions. The agreement with

some recent experiments has been found fairly good [26, 27], but the estimation of this

proportionality constant is not straightforward [28–30].

The simplicity of these contact line models, which assume that the damping of the system

has a linear origin, significantly eases the mathematical tractability of the problem. How-

ever, they are too simple to describe the complexity of the region in the neighbourhood of

the moving contact line.

Improving the modelling of damping effects requires looking more carefully at the dy-

namics of the oscillating meniscus and at its wetting conditions, a long-standing problem in

fluid mechanics that dates back to Navier [31] (see also [32–39] among others).

B. Nonlinear contact line models for partial wetting conditions

When a liquid meniscus flows over a dry solid substrate, there is a triple-phase interface

(air-liquid-solid), which experiences a complex nonlinear dynamics. Experimental observa-

tions [40–42] have shown that the dynamic advancing, θa, and receding, θr, contact angles

deviate from their static values depending on the velocity of displacement of the advancing

or receding meniscus. Moreover, there exists a range θ ∈ [θr, θa] within which the contact

line seems to remain stationary. The existence of such a static range, defined as contact

angle hysteresis, plays a critical role in the nonlinear damping and dynamics of capillary-

gravity waves.

Several models have been suggested to explain the nonlinear relation between the dy-

namic contact angles, θ, and the capillary number defined by the contact line velocity, U ,

i.e. Ca′ = µU/γ, with γ and µ, the air-liquid surface tension and dynamic viscosity, respec-

tively. [42–46].

The present investigation focuses on oscillatory flows, for which a brief overview of well-

known contact line models is provided in Fig. 1 and Fig. 2. For instance, the contact angle

dynamics observed for vertical vibrating sessile drops (Fig. 1) or during the relaxation of
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Figure 1. (a) Contact angle dynamics in a vertically vibrating droplet. For this oscillatory flows,

experiments from (b) Ref. 25 suggest as suitable phenomenological contact angle laws the (c)

nonlinear Dussan model [40, 47]. (d) Transition between stick and stick-slip motions in a water

sessile drop deposited on a vertically vibrating substrate characterized by a finite contact angle

hysteresis (∆ ≈ 10 − 15 degrees) [48]. Lower curves are contact angle variations versus time, the

dashed line represents θs. Higher curves are the contact line position around the starting position

before vibrations. The six curves for different non-dimensional acceleration amplitudes f/g are

joined together in the same plot for comparison. The driving frequency is 1/T = 9 Hz. Panels (b)

and (d) are modified versions of figures reported in Refs. 25 and 48, respectively.

sloshing waves (Fig. 2) are seen to obey the nonlinear (cubic) Dussan model, (θ − θs)3 ∼ Ca′

(see Fig. 1(b,c)), with θs the macroscopic static contact angle, and are sometimes well ap-

proximated by a modified Hocking ’s law supplemented with hysteresis (see Fig. 2(b,c)).

Furthermore, the rich dynamics of an oscillatory meniscus shows some interesting features

that the present analysis aims at reproducing and predicting. Some of those features are il-

lustrated in Fig. 1(d). In the study conducted by Noblin et al. (2004) [48], they investigated

the behaviour of a water droplet on a solid surface with a finite contact angle hysteresis

under vertical vibration. The results showed two distinct types of oscillations. At low forc-

ing amplitude, the contact line remains pinned and the drop displays eigenmodes at certain

4



Ca'

θr

θa

hy
st

er
es

is

Δ

(a) (b) modified
“Hocking”

θa

θr

(θ–θs) ~ Ca

-2.6 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.60

25

50

75

100

Ca'

θ
(d

eg
)

0 2.5 5 7.5 10 12.5 150

0.1

0.2

0.3

|φ| , angle at the container axis (deg)
D

am
pi

ng
ra

te
(H

z)

pinned

free

free

st
ic

k 
dy

na
m

ic
s

stick-slip 
dynamics

θs

θa

θr

Δ

t, time

(c) (d)

θs

φ

Figure 2. (a) Contact angle dynamics in sloshing waves (snapshots over a period) [49]. For

this oscillatory flow, experiments from Ref. 50 suggest as suitable phenomenological contact angle

laws the (b) Hocking linear law [24] supplemented with hysteresis. (c) Experimental contact angle

dependence on the capillary number as measured in Ref. 50 during the natural relaxation dynamics

of water oscillations in a cylindrical container initially perturbed. (d) Associated damping rate

versus the amplitude of the angle, ϕ, measured at the container axis as indicated in panel (a). The

vertical dashed line indicates the value for which the contact line irreversibly pins. Panels (a) and

(c)-(d) are modified versions of figures reported in Refs. 49 and 50, respectively.

resonance frequencies. At higher amplitudes, the contact line starts to move, remaining

circular but with a radius oscillating at the excitation frequency. This transition between

the two regimes occurs when the variations of the contact angle exceed the hysteresis range.

They also observed a decrease in the resonance frequencies at larger vibration amplitudes for

which the contact line is mobile. These features were attributed to the hysteresis acting as

solidlike friction on the oscillations, leading to a stick-slip regime at intermediate amplitude.

In their seminal work, Cocciaro et al. (1993) [50] thoroughly characterized the contact

angle dynamics during the natural (free-of-forcing) relaxation phase of the fundamental

asymmetric sloshing mode in a small circular cylindrical container. Two different damp-

ing regimes were observed, corresponding to higher and smaller wave amplitude oscillations
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(see Fig. 2(d)). First, the contact line slides over the solid substrate experiencing progressive

stick-slip transitions under the effect of the dynamic wall friction. In this phase, the damping

increases considerably as the wave amplitude decreases, until it reaches a maximum value,

after which it starts to decrease, and the small amplitude regime is established. A finite

time of arrest for the contact line is found: the interface irreversibly pins and the ensuing

residual pure bulk motion is seen to decay exponentially owing to the linear viscous dissi-

pation acting in the fluid bulk and in the Stokes boundary layers. The natural oscillation

frequency initially matches the value associated with a free-end edge eigenmode, it increases

during the decay, and it eventually tends to the value associated with a pinned-end edge

eigenmode.

C. Motivation and Objective

As an alternative to computationally expensive fully nonlinear direct numerical simula-

tions (see [51, 52] among others), different theoretical frameworks, attempting to rationalize

the nonlinear dependence of the damping rate on the oscillation amplitude, have been re-

cently proposed [53, 54]. These works are based on an asymptotic formulation of the full

hydrodynamic problem, which is tackled in the spirit of the weakly nonlinear and multiple

timescale approach, under precise assumptions and range of validity. The asymptotic anal-

ysis is found to be able to quantitatively predict the nonlinear trend of the damping in the

higher amplitudes regime and the existence of a finite-time of arrest for the contact line, in

agreement with experiments [2, 50]. However, it fails in capturing the transient stick-slip

motion and, most importantly, the transition to the small amplitude regime, when the in-

terface pins but the fluid bulk keeps oscillating with a smaller amplitude motion following

a purely pinned dynamics.

The purpose of the present work is to provide a different theoretical approach, which

overcomes the limitations of these asymptotic analyses, thus successfully solving the overall

flow dynamics and enabling us to extract and highlight realistic flow features, yet keeping a

low computational cost. To this end, we consider liquid oscillations in the simplest sloshing

configuration, i.e. liquid columns oscillating in a U-shaped tube, as experimentally inves-

tigated by Dollet et al. (2020) [2], and subjected to a physics-inspired nonlinear contact

line model following Bongarzone et al. (2021) [1]. Using a piecewise time splitting of the

nonlinear contact line law to which the contact line obeys, we formalize a mathematical
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model based on successive projections between different sets of linear eigenmodes pertaining

to each linear split-piece composing the contact line law.

The manuscript is organized as follows. In §II we summarize the experimental findings

reported by Dollet et al. (2020) [2] and comment on the advantages and limitations of the

one-degree-of-freedom (1dof) system employed in their study to model the liquid oscilla-

tions. We present the full hydrodynamic system in §III, while a numerical characterization

in terms of oscillation frequencies and damping rates associated with the various dynamical

phases is carried out in §IV. The salient points of the projection method presented in Ref. 1

are shortly recalled and described in §V. Results and comparison with experiments are given

in §VI. Lastly, final conclusions are outlined in §VII.

II. THE CASE OF LIQUID OSCILLATIONS IN U-SHAPED TUBES

Dollet et al. (2020) [2] studied the decay of liquid oscillations in a U-shaped tube. They

experimentally showed that in the presence of moving contact lines, oscillations are nonlin-

early damped, with a finite-time arrest and a dependence on initial conditions. Consistently

with the theoretical analysis by Viola et al. (2018) [53], they also revealed that contact

angle hysteresis can explain this behaviour and quantified the solidlike friction attributable

to the contact angle hysteresis.

For their experiments, Dollet et al. (2020) used two U-shaped glass tubes, one rendered

hydrophilic and the other hydrophobic by specifc treatments. The two straight arms of the

tubes, separated by a distance R ≈ 22.5 mm (the authors have provided us with this value

in a personal communication), have a constant inner radius a = 8.15± 0.15 mm (see Fig. 4).

Two liquids, namely ultrapure water and absolute ethanol, were used. With regards to the

hydrophobic tube, the following wetting properties were measured: θr = (68± 10)◦ and

θa = (93± 2)◦ for water, and θr = (28±) 2◦ and θa = (34± 2)◦ for ethanol.

A controlled volume of liquid, making a column of length l along the centerline, was in-

jected into the tube. Successively, an initial height imbalance 2hin between the two contact

lines in the left and right straight arms of the tube was introduced and suddenly released.

The subsequent natural oscillations of one of the two interfaces were then recorded with a

camera.

The relaxation of liquid oscillations in the hydrophilic tube, not reported here for the

sake of brevity, was observed to be of exponential nature for both ethanol and water. More
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Figure 3. (a) Dimensional interface height h̄ (t) mm vs dimensional time t̄ (s) for water and ethanol

in the hydrophobic tube and for liquid column length l = 14.6 mm. (b) Rescaled interface height,

h, vs time t̄ (s), for water in the hydrophobic tube with a fixed liquid column length l = 14.6 mm

and at different initial elevation hin. The solid curves correspond to the predictions from Eq. (5)

with an oscillation period T = 2π/ω0 = 2π
√
l/2g and with σ = 0.06 as a free fitting parameter

common for all experiments. (c) Phenomenological law used in the present work to model the

apparent dynamic contact angle, θ, vs the non-dimensional contact line speed, Ca′ = Ca∂η/∂t,

with Ca = νρ
√
gl/2/γ, ν the kinematic liquid viscosity, ρ the liquid density and γ the liquid-air

surface tension. Panels (a) and (b) are modified versions of figures reported in Ref. 2.

complex is instead the scenario when dealing with the hydrophobic tube. For this condition,

the relevant results of their study are reported in Fig. 3. Panel (a) shows the oscillation

decay for both ethanol and water and for the same liquid column length and initial ele-

vation hin. For both liquids, the oscillation period, T , is well predicted by the analytical

formula, i.e. T = 2π/ω0 = 2π
√
l/2g [7], however, for water, the effect of wetting conditions

is striking: despite the larger viscosity of ethanol, water oscillations are much more damped,

with a finite-time contact line arrest, tarr, and a dependence of tarr on the imposed initial

condition, hin, as illustrated in panel (b).

To rationalize such nonlinear relaxation dynamics for the contact line, the authors em-

ployed the 1dof model reminiscent of that of Viola et al. (2018) [53] and which relies on two

assumptions: (i) the tube curvature is neglected and (ii) the flow is hypothesized plug-like.

It is difficult to rigorously justify (i), but (ii) appears reasonable as the Stokes boundary

layer thickness in these experiments is of the order of
√

4πν/T ≈ 0.4 mm� a(= 8.15 mm).

This 1dof model then results from the interplay of inertia, gravity as restoring force, linear
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damping and nonlinear contact line damping included as solid friction:

d2h

dt2
+ 2σ

dh

dt
+ h+ µ sign

(
dh

dt

)
= 0, (4a)

h =
h̄

hin
, t = ω0t̄, σ =

σ̄ω0

2πρga2
, µ =

γ (cos θr − cos θa)

ρgahin
, (4b)

with the initial conditions h = 1 and dh/dt = 0 at t = 0 and with the bar symbol denoting di-

mensional quantities. Importantly, in Eq. (4a), the linear damping coefficient σ is considered

as a free-fitting parameter. In the limit of small damping, i.e. σ � 1 and µ� 1, an insight-

ful solution to Eq. (4a) can be obtained by applying the multiple scales method as outlined

in Refs. 1, 53, and 54. The elevation h (t) is expanded as h0 + εh1 . . ., with ε a small non-

dimensional parameter � 1 and with a leading order solution h0 (t) = (1/2)A (εt) eit + c.c. .

Moreover, the amplitude A (εt) is assumed to depend on time only through a slow time scale

∼ εt. Successively, the imposition of a solvability condition at order ε yields the following

asymptotic approximation,

h (t) =

[
− 2µ

πσ
+

(
1 +

2µ

πσ

)
e−αt/2

]
cos t, (5)

if t ≤ tarr, and h = 0 if t ≥ tarr, with tarr = 1
σ

log [1 + (πσ/2µ)] the time of arrest of

the contact line oscillations. Eq. 5 predicts an envelope shape that varies from the classi-

cal exponential damping as σ � µ (nearly linear dissipation) to a linear decay in time as

µ� σ (solidlike friction). In spite of the strong oversimplifications, the 1dof model predicts

fairly well the experimental contact line dynamics once the damping σ is fitted from experi-

ments. In the experimental range of liquid column lengths explored, a unique value of σ, i.e.

σ = 0.06 (for water), allowed for a good overall comparison. One can therefore state that

the 1dof nonlinear pendulum-like model is capable of reproducing the global features of the

relaxation dynamics in the presence of contact angle hysteresis, hence providing a powerful

tool to obtain a quick estimation, e.g., of the finite-time arrest.

Nevertheless, a few main limitations are worth to be commented on. Preceding the time

of arrest, the contact line exhibits some transient stick-slip transitions (visible in Fig. 3(a)

and (b)). As discussed in Ref. 1, each time that the contact line transiently reaches a zero

speed, the contact angle will have to adjust from θa to θr (or vice versa) while the contact line

remains pinned; this dynamical variation obviously requires a certain time-interval to hap-

pen. Most importantly, after the time of arrest, the fluid bulk still exhibits oscillations, even
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if the contact line is pinned. These secondary oscillations are unaffected by nonlinear friction

and, therefore, decay exponentially under the effect of pure linear viscous dissipation (see

Supplementary Material of Ref. 2 for an experimental quantification of the damping rate and

frequency in the pinned regime). Such a stick-slip-to-stick transition cannot be captured by

a the 1dof model, as it intrinsically calls for a modelization of the many-degrees-of-freedom

of the system. Lastly, the 1dof model requires the fitting of the linear damping, σ, whose

accurate computation can be very subtle. The linear damping englobes multiple dissipative

effects: the dissipation occurring in the Stokes boundary laters at the tube walls, the one

induced by three-dimensional effects in the curved part of the tube and, particularly, possi-

ble extra dissipation sources linked to the contact line motion, such as a dynamical contact

angle variation at a non-zero contact line speed (see Fig. 3(c)) which is a ubiquitous feature

of similar experiments (see, for instance, Refs. 24, 25, 41, 46, 47, 50, and 55, among others).

With the aim of building a more refined model so as to overcome these limitations, in

the following we will characterize the present U-tube dynamics by considering the full hy-

drodynamic system of governing equations, to which we will apply the projection method

developed by Bongarzone et al. (2021) [1]. The case of water oscillations in the hydropho-

bic tube described in Dollet et al. (2020) and summarized in Fig. 3 will represent our

experimental reference condition.

III. FULL HYDRODYNAMIC SYSTEM

A. Governing equations

With regards to the experimental setup of Ref. 2 previously discussed, let us consider a U-

shaped tube of radius a and filled with a liquid column of length l, as illustrated in Fig. 4(a,b).

The section of the tube is assumed constant all over the tube length, a first geometrical

approximation already dealt with by Dollet et al. (2020) [2]. The geometry of the problem

remains intrinsically three-dimensional (3D). Nevertheless, by analogy with the approach

employed by Iguchi et al. (1982) [56] and Dollet et al. (2020), in the following, we neglect

the tube curvature. This is certainly a strong a priori assumption, which appears worth

to be discussed. Appendix A is devoted to discussing, at least partially, its justification.

Under this hypothesis, one may then imagine cutting the tube in half and unfolding it, so

as to consider the z-axis as straight and only half of the liquid column, of length l/2. At
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Figure 4. Sketch of the U-tube configuration. (a) Full three-dimensional geometry (3D). (b) Two-

dimensional (2D) view of the centerline plane. The tube radius is assumed constant and denoted

by a. The length of the liquid column is l. h indicates the height difference of the liquid column

between the left and right straight channels. g is the gravity acceleration. The advancing and

receding dynamic contact angles are, respectively, θa and θr, whereas the static contact angle is

labelled as θs and it is in general 6= 90◦. (c) If the tube curvature is neglected, the 3D geometry

can be reduced to an axisymmetric configuration, by considering only half of the liquid column,

of length l/2, and by imposing anti-symmetry conditions at the bottom boundary so as to restore

the effect of the gravity term on the missing straight channel.

this stage, we have reduced the 3D geometry to an axisymmetric configuration, that can

now be more easily described in cylindrical coordinates, Orφz. The origin of the cylindrical

reference system is located at the intersection of the unperturbed static interface at z = η0

with the centerline axis at r = 0. The effect of the gravity term on the missing half of the

domain can be correctly restored by considering proper anti-symmetry conditions on the

bottom boundary at z = −l/2 (Fig. 4(c)). The sudden sign switching of the effect of gravity

in z = −l/2 is consistent with neglecting the curvature in the U-turn region.

The viscous flow within the U-shape tube is thus governed by the incompressible Navier-

Stokes equations

∇ · u = 0,
∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∆u = −1êz, (6)

which are made nondimensional by using the container’s characteristic length l and the
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velocity
√
gl/2 (Fig. 4). Consequently, the Reynolds number is defined as Re =

√
g(l/2)3

ν

and the term −1êz denotes the nondimensional gravity acceleration. In Eq. (6), p (r, z, t)

is the pressure field, whereas u (r, z, t) = {u,w}T is the velocity field, with u and w the

radial and axial velocity, respectively. Note that the dynamics is assumed axisymmetric and

such assumption will be maintained throughout the manuscript. At the free surface, z = η,

kinematic and dynamic boundary conditions hold,

D (η − z)

Dt
=
∂η

∂t
+ u

∂η

∂r
− w = 0, (7a)

[
−pI +

1

Re

(
∇u +∇Tu

)
− 1

Bo
κ (η) I

]
· n = 0, (7b)

where D/Dt is the material derivative, n = (1 + η2r)
−1/2 {−ηr, 1}T is unit vector normal to

the interface, and κ is the free surface curvature, κ (η) = [ηrr + r−1ηr (1 + η2r)] (1 + η2r)
−3/2

.

The Bond number is defined as Bo = ρga2

γ

(
l/2
a

)2
, with γ designating the air-liquid surface

tension. As anticipated above, the restoring effect of the missing half of the tube is rein-

troduced by imposing anti-symmetry conditions for u and w at the bottom boundary (see

Fig. 4(c)). More precisely, we impose

u =
∂w

∂z
= 0 at z = −1. (8)

Moreover, owing to the axisymmetric assumption, the axis boundary condition imposes

u =
∂w

∂r
= 0 at r = 0. (9)

B. Treatment of the sidewall: a macroscopic depth-dependent slip-length model

With regards to the modelling of the sidewall boundary condition, the case of a pinned

contact line is compatible with the classical no-slip condition [57]. The latter will be em-

ployed throughout the paper whenever dealing with a fixed contact line. On the other hand,

the no-slip condition and a moving contact line are not compatible with each other and one

must adopt different strategies.

Here we adopt a slip-length model, thus assuming that the fluid speed relative to the solid

wall is proportional to the viscous stress [31, 38] and that, together with the no-penetration

condition, provides the boundary conditions

u = 0, w + ls (z)
∂w

∂x
= 0 at r =

a

l/2
. (10)
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Such a condition is indeed needed in order to regularize the stress singularity at the moving

contact line [33, 34]. It was hypothesized by Miles (1990) [35] and Ting & Perlin (1995)

[36] that the phenomenological macroscopic slip length appearing in Eq. (10) should not be

assumed constant along the wall, but rather spatially dependent on the position along the

lateral wall and vanishing at a certain distance away from the contact line, where the flow

obeys the no-slip condition. For this reason, we employ here a depth-dependent slip length as

proposed by Bongarzone & Gallaire (2022) [58], which has been shown to correctly estimate

the linear dissipation occurring in the Stokes boundary layers at the lateral solid walls (see

Appendix B for further validations specific to the present case). Briefly, we postulate that

the slip length ls (z) is described by the exponential law

ls (z) = lcl exp

(
−
(
z − η
δ

)
log

(
lδ
lcl

))
, z ∈ [−H, η (r = 1)] . (11)

In Eq. (11), lcl is the slip-length value at the contact line, r = a/ (l/2) and z = η (r = 1),

whereas lδ is its value at a distance δ below the contact line, r = a/ (l/2) and z = η − δ, with

δ representing the size of the slip region [36]. In principle, lcl, lδ and δ are all free parameters.

However, keeping in mind that, macroscopically speaking, one aims at mimicking a stress-free

condition in the vicinity of the contact line and a no-slip condition after a certain distance

δ, the natural choice is lcl � 1 (∼ 102÷104) and lδ � 1 (∼ 10−4÷10−6). The range of values

proposed in brackets is based on the sensitivity analysis reported in Ref. 58, whereas the slip

region penetration depth, δ, as postulated by Miles (1990) [35], is here assumed of the order of

the non-dimensional Stokes boundary layer thickness, i.e. δ ≈ (l/2)−1 δSt = (l/2)−1
√

2ν/ω0,

with ω2
0 = 2g/l. What mostly matters is that δ is kept small with respect to all other scales

at hand in the problem, i.e. l, a, R, capillary length
√
γ/ρg or Stokes boundary layer

thickness
√

2ν/ω0.

C. Phenomenological contact angle model and static meniscus

Lastly, to model the contact line motion, z = η and r = a/ (l/2), we include the phe-

nomenological law of Fig. 3(c), which describes the nonlinear contact angle dynamic as a

function of the contact line speed,

∂η

∂r
= ± cot θ, θ − θs = αCa

∂η

∂t
+

∆

2
sign

(
∂η

∂t

)
(Hocking+hysteresis) , (12)

with Ca = νρ
√
gl/2/γ and with the value of α that will be discussed and specified in the

next section. Note that this model has already been used in Ref. 1 and it results from a
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Figure 5. Shape of the dimensional static meniscus, η0, computed numerically for θs =

(θa + θr) /2 = (93 + 68) /2 = 80.5◦.

combination of the linear Hocking’s law [24], of slope α, and a static contact angle hys-

teresis of range ∆. In the rest of the paper, to simplify calculations, we will additionally

(and somewhat naively) assume that the advancing and receding phases are completely

symmetric and that the hysteresis range is centered around θs, i.e. θ+ = θa − θs = ∆/2

and θ− = θr − θs = −∆/2, while being aware that the advancing and receding contact line

dynamics are generally characterized by different value of α, i.e. αA 6= αR [40, 41, 43–45, 50].

In the limit of small oscillation amplitudes and small static contact angle hysteresis, the

fully nonlinear governing equations (6) together with their boundary conditions (7a)-(12)

can be linearized around the rest state, characterized by zero velocity and pure hydrostatic

pressure. With regards to the experiments by Dollet et al. (2020) for water in the hydropho-

bic tube, the measured advancing and receding contact angles are, respectively, θa = 93◦

and θr = 68◦. If we hypothesize the equilibrium angle θs to be the averaged value of θa and

θr, this amounts to θs = 80.5◦, meaning that the static free surface is not flat (as it would

be for θs = 90◦). We therefore linearize the system of equations around an initially curved

static meniscus, whose resulting axisymmetric shape, reported in Fig. 5, is computed as the

solution of the following static equation:

η0 =
1

Bo

[
η0,rr + r−1η0,r

(
1 + η20,r

)
(
1 + η20,r

)3/2

]
, with

∂η0
∂r

∣∣∣∣
r=0

= 0,
∂η0
∂r

∣∣∣∣
r=a/(l/2)

= cot θs, (13)

Eq. (13) is nonlinear in η0 and can be solved numerically using an iterative Newton method

as described in Appendix A.1 of Ref. 53.
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IV. NATURAL PROPERTIES OF THE SYSTEM

Notwithstanding the linearization of the governing equations around the rest state, the

system is still nonlinear owing to the hysteretic contact angle model (12). Nevertheless,

it appears intuitive that the underlying contact line motion can be split into two distinct

dynamical phases, namely a pinned-phase, described by the condition

∂η

∂t
= 0 (pinned-phase), (14)

and a free-phase with
∂η

∂r
+ αCa

∂η

∂t
= −θ± (free-phase), (15)

both evaluated at r = a/ (l/2). The non-homogeneous term in the right-hand side of Eq. (15)

will be dealt with within the formalism of the projection method. Let us ignore this term

for the moment by rewriting
∂η

∂r
+ αCa

∂η

∂t
= 0. (16)

Then, the system of governing equations closed by these two boundary conditions, taken

independently, translate into two separated fully linear homogeneous problems, that can be

both written in the form

Bf,p
∂

∂t
qf,p = Af,pqf,p. (17)

with qf,p = {uf,p, pf,p, ηf,p}T the state vector. The symbolic expressions of the mass matrix

Bf,p and the stiffness matrix Af,p are explicitly given in Ref. 1, while the subscripts f,p are

here used to designate either the free (f ) or the pinned (p) phase. By introducing the ansatz

qf,p = q̂f,pe
λf,pt + c.c. , (18)

with λf,p = −σf,p + iωf,p, equation (17) reduces to the following generalized eigenvalue

problem

λf,pBf,pq̂f,p = Af,p. (19)

Matrices Af,p and Bf,p are numerically discretized by means of a Chebyshev collocation

method implemented in Matlab in the same fashion of Refs. 1, 53, 54, and 58; the resulting

eigenvalue problem is also solved in Matlab via the built-in eigs function.

The eigenvalue spectrum associated with the solution of the two independent eigenvalue

problems is reported in Fig. 6. This figure shows, for both wetting phases, a spectrum

15



10−1 100 101 102

−2

−1

0

ω f ,p

σ
f,

p U-tube free mode
U-tube pinn. mode

Cap-Grav. free modes
Cap-Grav. pinn. modes

Figure 6. Eigenvalue spectrum associated with the two contact line boundary conditions, i.e.

pinned (green markers) and free (blue markers), computed numerically by solving the generalized

eigenvalue problem (19). For the case of a free contact line condition, the calculation here reported

has been performed by imposing a value of α = 0. Both spectra are computed for a liquid

column length l = 14.6 cm. Fluid properties: water, ρ = 1000 kg/m3, γ = 0.0725 N/m and

ν = 1× 10−6 m2/s.
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Figure 7. (a) Eigen-interface associated with the U-tube free mode computed in 6. The free surface

dynamics in the free-phase consists of an upward-downward oscillation of a flat interface. (b) Eigen-

interface associated with U-tube pinned mode computed in 6. Instead, the surface dynamics in the

pinned-phase consists of an interface oscillating with a bell-like shape whose edges are anchored at

the wall.

that contains two families of oscillating natural modes, namely a free/pinned U-tube mode

and free/pinned capillary-gravity waves. However, these waves oscillate at a much larger

frequency, at least ten times higher, than the fundamental U-tube mode, and are typically

more damped than the U-tube mode. The latter mode, with its dynamical properties and
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Figure 8. Dimensional oscillation period, T , and damping coefficient, σ, versus the water column

length and associated with a pinned contact line dynamics of the fundamental U-tube mode. Green

diamonds: values computed fully numerical eigenvalue calculation. White circles: values measured

experimentally as reported in Ref. 2.

structure, displayed in Fig. 7, is, therefore, the mode that is expected to govern the dynamics.

Hence, in the next two sub-sections we will carefully comment on the eigenvalue properties

of such U-tube modes, tackled separately in the two dynamical phases. For simplicity, we will

start from the pinned-phase, which appears easily describable from a numerical perspective.

Successively, we will handle the free-phase, whose description hinges on the subtle modelling

of the moving contact line and slip length conditions.

A. Pinned-phase

The dependence of the oscillation period and of the damping coefficient on the liquid

column length for the U-tube pinned mode, as numerically computed, is shown in Fig. 8.

Only one experimental value has been reported by Dollet et al. (2020) [2] (in their Sup-

plementary Material) and it seems in agreement with our trend, which is also reminiscent

of that displayed in Fig. 3(c), although no analytical dispersion relation exists for a pinned

contact line.
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More experimental values are available with regard to the damping coefficient. Although

some discrepancies are observed at larger values of l, an overall fair agreement is found when

compared with our numerical estimates.

In this regard, it is important to realize that a pinned contact line condition is math-

ematically fully compatible with a no-slip wall condition, i.e. no stress singularity needs

to be resolved at the contact line, hence allowing one for a precise numerical estimation of

the damping. If we ignore experimental errors and ensure numerical convergence, the main

possible source of disagreement with these experiments is attributable to free surface con-

tamination or three-dimensional (3D) effects, overlooked by our ideal axisymmetric model,

which neglects the tube curvature. To be sure that 3D effects are not important, in Ap-

pendix A, we perform a full 3D eigenvalue calculation so as to refine the numerical values

reported in Fig. 8. This calculation proves 3D corrections to be small.

B. Free-phase

1. Ignoring dynamical contact angle variation: α = 0

By analogy with the pinned case, the dependence of the oscillation period and of the

damping coefficient on the liquid column length for the U-tube free mode is shown in Fig. 9.

The numerics slightly overestimate the oscillation period, but overall it is in good agreement

with the experiments. The fact that the experimental data are better described by the theo-

retical formula, which does not account for viscous dissipation, is however counter-intuitive.

Pure viscous dissipation should indeed introduce a viscous correction to the natural fre-

quency, which should result in a diminished value or, equivalently, in a higher oscillation

period T . This may suggest that there is a second effect counteracting and compensating for

such a viscous correction to the natural frequency. Appendix A shows that, among the small

three-dimensional effects ignored in the present analysis, the curved part of the U-tube may

lead to a small increase in the natural frequencies that can contribute to this compensation

effect.

In employing the 1dof model, Dollet et al. (2020) used a non-dimensional linear damping

coefficient σ fitted from experiments and whose best-fit value amounts to 0.06. This coef-

ficient is difficult to predict precisely, as it englobes several contributions, among which is

the dissipation occurring in the laminar Stokes boundary layers at the lateral walls.
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Figure 9. (a) Dimensional oscillation period, T , and (b) damping coefficient, σ, versus the water

column length, l (cm) and associated with a free contact line dynamics of the fundamental U-tube

mode. Blue diamonds: values computed fully numerical eigenvalue calculation by accounting for

the variable slip length model discussed in Eq. (16) with α = 0. White circles in (a): values

measured experimentally as reported in Ref. 2. The experimental range investigated in Ref. 2 is

indicated by the grey arrow in (b). Within this range, the damping coefficient is nearly constant

with the tube length.

The numerical approach here employed, based on the slip length model previously dis-

cussed, provides a tool to compute the dissipation associated with the Stokes boundary

layers (see Ref. 58 for further details).

Fig. 9(b) shows that within the experimental range of liquid column length, l (cm), con-

sidered, the damping σ does not vary much with l, thus possibly explaining why a single

value of σ fitted from experiments can allow a good match with those measurements. The

present numerical calculation for the damping is also compared to an analytical estimate

developed in Appendix B, that also validates the numerical scheme.

Nevertheless, the non-dimensional averaged value in the experimental range of water col-

umn lengths, amounts to σ ≈ 0.027, which is less than half the one needed for a good
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Figure 10. Same as in Fig. 9 (here in σ-log scale), but with the light blue crosses indicating the

values computed by also accounting for extra contact line dissipation produced by Hocking’s law

[1, 24] with α = 200 rad). Within this range, the damping coefficient is nearly constant with the

tube length, l, even for α = 200 rad. The average value in this range is σ ≈ 0.06, which matches

the one used in Fig. 3 and obtained from the best-fit of the experiments.

agreement with the data. The averaged value is computed as σ = n−1i
∑ni

i σi
√
li/2g, with

ni the number of lengths l used to sample the experimental range.

As discussed in Appendix A, three-dimensional effects related to the tube curvature can

produce an increase in the damping of a few percentages, but this is not sufficient to explain

such a mismatch. The extra dissipation missing in the modelization of the free phase is

therefore very likely attributable to the contact line dynamics.

2. Accounting for dynamical contact angle variation: α 6= 0

As in the experimental conditions considered here the extra contact line dissipation is

well englobed into a linear damping coefficient, we propose to adopt a linear law for the

dynamic contact angle variations being proportional to the contact line speed. We therefore
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liquid ρ
(
kg/m3

)
γ (N/m) ν

(
m2/s

)
M (Pa s) ᾱ = M

γ (s/m) α = ᾱ γ
νρ (rad)

water 1000 0.072 1.0×10−6 0.2 6.25 200

mixture 983 0.050 1.0×10−6 0.14 2.8 140

ethanol 786 0.022 1.4×10−6 0.04 1.82 36

Table I. Value of the non-dimensional contact line parameter α for water, water-ethanol mixture

and pure ethanol as measured by Hamraoui et al. (2000) [29]. The dimensional value of the

friction coefficient M (denoted by β in their study) is here converted in the dimensional, α, and

non-dimensional, α, contact line parameter.

reintroduce the contact line parameter that characterizes the Hocking law, i.e. α 6= 0.

Recalling the contact line condition for the free-phase (16), one can see how a value of α = 0

would correspond to a contact line sliding over the solid substrate with a constant and zero

slope (dashed lines in Fig. 3). On the other hand, the pinned condition (14) is nothing

more than a limiting case of Eq. (15) with α → +∞. We are supposing here to be in

an intermediate situation where α, sometimes also referred to as friction coefficient [29] or

mobility parameter M [25], assumes a finite value different from zero.

Let us first blindly consider α as a free fitting parameter. A value of α = 200 rad leads

to a non-dimensional averaged (in the experimental range of Fig. 10) damping coefficient of

σ = σ
√
l/2g ≈ 0.06, which is exactly the value that was fitted by Dollet et al. (2020). If

this procedure shows that a simple linear dynamic contact line model is sufficient to explain

the missing dissipation, one can wonder whether the value of α used is meaningful for the

experimental conditions discussed here.

Hamraoui et al. (2000) [29] have studied the kinetics of capillary rise of pure water and

pure ethanol as well as their mixtures that, under static conditions, wet glass capillary tubes

in both dry and prewetting wall conditions. Specifically, they have postulated a dynamic

contact angle term that is linearly dependent on the velocity of the capillary rise and whose

correction, in this linear approximation, takes on the form of a three-phase line friction

coefficient, M , equivalent to our parameter α, up to a proper dimensionalization factor.

The value of M for ethanol, water and a water-ethanol mixture is reported in table I.

Particularly relevant to our study is the value measured by Hamraoui et al. (2000) for

pure water, M = 0.2 Pa s, which translates into α = 200 rad, hence matching precisely the
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value found to fit the experimental data. As a side comment, the use of the coefficient α

also produces an increase in the natural frequencies, thus bringing the numerics closer to

the experimental values.

Through this careful comparison with experiments by Hamraoui et al. (2000) and Dollet

et al. (2020), we have been capable of quantifying numerically the natural properties of the

system in the two dynamical phases of interest, handled independently. All our estimates

and hypotheses seem consistent with these measurements.

The idea is now to combine the two separated descriptions for the pinned-phase and free-

phase, so as to account for a dynamic change in the contact line boundary conditions and

predict the nonlinear relaxation dynamics. This is done in the next section by employing

the projection algorithm.

V. PROJECTION METHOD

A. General formalism

A detailed step-by-step description of the projection algorithm is already provided in

Bongarzone et al. (2021) [1]. In this section, we recall the salient points of the method

and we comment on the few differences intrinsic to specific dynamics of the problem here

considered.

When the contact line motion is schematized using Hocking’s law amended with a static

hysteresis range, we can identify two well-distinct phases of the dynamics, one in which

the angle varies linearly with a slope α as a function of the contact line speed, Ca∂η/∂t

(Hocking’s linear law) and one in which the contact line is pinned at a certain elevation with

zero velocity (static hysteresis) and the angle changes from θs+ θ+ to θs+ θ− (∆ = θ+− θ−)

or vice versa. We remind that we denote these two phases as free, f , and pinned, p, phase,

respectively.

The solution in these two phases is then expressed as the sum of the corresponding

particular static solution (meniscus mode), qfs and qps (the subscripts fs,ps stand for free-

static or pinned-static), and a truncated basis of linear eigenmodes, q̂fn and q̂pm , weighted
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Figure 11. (a) Axisymmetric meniscus modes associated with the free-phase and (b) with the

pinned-phase. In (a), the slope at the wall is 1, whereas the contact line elevation is F0. In (b), the

slope is 1/F0, whereas the contact line elevation is 1. (c) Real part of the eigen-interface associated

with the free and (d) pinned U-tube modes, with the corresponding eigenvalues, λf0 = −σf0 + iωf0

and λp0 = −σp0 + iωp0 reported on top. The free mode is normalized such that the contact

line elevation is 1, while the pinned mode is normalized such that the slope at the wall is 1. For

completeness, in (c), we have also reported the interface shape when α = 0 (thin blue line) as shown

in Fig. 7(a). (e)-(i) Real part of the eigen-interface associated with the five least damped free and

(j)-(n) pinned capillary-gravity waves. The same normalization as in (c) and (d) is employed.
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by their unknown amplitudes:

qf = θ±qfs︸ ︷︷ ︸
free-end meniscus mode

+
(
A0q̂f0e

λf0(t−Tf) + c.c.
)

︸ ︷︷ ︸
free-end U-tube mode

+




Nf∑

n=1

Afnq̂fne
λfn(t−Tf) + c.c.




︸ ︷︷ ︸
free-end capillary-gravity waves

(20a)

qp = efpqps︸ ︷︷ ︸
pinned-end meniscus mode

+
(
B0q̂p0e

λp0 (t−Tp) + c.c.
)

︸ ︷︷ ︸
pinned-end U-tube mode

+

(
Mp∑

m=1

Bpmq̂pme
λpm (t−Tp) + c.c.

)

︸ ︷︷ ︸
pinned-end capillary-gravity waves

(20b)

All these ingredients are visually summarized in Fig. 11. As described in the previous section

and in contradistinction with the two-dimensional system of Ref. 1, the present U-tube

dynamics is characterized by two families of oscillating natural modes, namely a free/pinned

U-tube mode (n = 0 or m = 0) and free/pinned capillary-gravity waves (n ∈ [1, Nf ],

m ∈ [1,Mp]). However, these waves oscillate at a much larger frequency and are more

damped than the U-tube modes. Accounting for them in the algorithm is useful if one

is interested in capturing fast transients, but with the purpose of modelling the global

dynamical features of the system, their inclusion in the analysis is not strictly necessary.

Hereinafter we will ignore the capillary-gravity waves, and we will only retain the dominant

free and pinned U-tube natural modes described in §IV and here denoted by q̂f0 (free)

and q̂p0 (pinned), with amplitudes A0 and B0, and eigenvalues λf0 = −σf0 + iωf0 and

λp0 = −σp0 + iωp0 , respectively.

Including a meniscus mode in the solution form (20a) associated with the free-phase,

i.e. qfs , is necessary in order to properly deal with the non-homogeneous term in the right-

hand-side of the contact line condition (15). The particular solution resulting from this

static forcing term, −θ±, consists in a static meniscus modification ηfs (with ufs = 0) that

satisfies the linearized meniscus equation

ηfs −
1

Bo

[
1

(
1 + η20,r

)3/2
∂2ηfs
∂r2

+

(
1 + η20,r

)
(
1 + η20,r

)5/2
1

r

∂ηfs
∂r

]
= 0, with

∂ηfs
∂r

∣∣∣∣
r=a/(l/2)

= −θ±, (21)

with the terms in brackets representing the first-order variation of the nonlinear curvature

linearized around the static meniscus η0 and applied to ηfs . For the convenience of notation,

note that, in Eq. (21), we actually impose the slope ∂ηfs/∂r = −1 instead of −θ±, while

keeping the term θ± explicit in front of the particular solution in (20a).
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Figure 12. Workflow of the projection algorithm (from (a) to (c)).

The pinned-condition (14) is homogeneous and it is explicitly accounted for in the cor-

responding eigenvalue problem. However, the condition ∂η/∂t = 0 also allows for a static

particular solution with ηps = constant at the contact line r = a/ (l/2) (and with ups = 0).

The meniscus mode for the pinned-phase is therefore computed as ηps = ηfs/F0, with F0 the

value of ηfs at the wall r = a/ (l/2), so as to have a unitary value, ηps = 1, at r = a/ (l/2)

(see Fig. 11). This unitary value is weighted by the contact line elevation efp in (20b), with

efp kept fixed during the pinned-phase.

B. Workflow of the method

A visual workflow of the algorithm is illustrated in Fig. 12. Let us suppose to initialize

the system in the upper free-phase (panel (a)) by assigning the amplitude of the free U-tube

mode, A0, at t − Tf = 0. The system is let evolve in time according to (20a). When the

contact line speed reaches the null value, we have the first transition, i.e. from free to pinned.

At this time instant, t = Tp, we require the continuity of all variables of the system, i.e.

qp (0) = qf (Tp − Tf ). This corresponds to imposing

θ+qfs +
(
A0q̂f0e

(−σf0+iωf0)(Tp−Tf) + c.c.
)

= efpqps + (B0q̂p0 + c.c.) , (22)

which, using the fact that the contact line elevation at the end of the free-phase reads (noting

that η̂f0 = 1 at r = a/ (l/2) and ηps = ηfs/F0)

efp = θ+F0 +
(
A0 e

(−σf0+iωf0)(Tp−Tf) + c.c.
)
, (23)

can be conveniently rewritten as

B0q̂p0 + c.c. = A0 (q̂f0 − qps) e
(−σf0+iωf0)(Tp−Tf) + c.c. ≡ ffp, (24)
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where the resulting term on the right-hand side is fully known.

The amplitude of the U-tube mode pertaining to the next pinned-phase, B0, still unknown

at this stage, is computed by projecting, with respect to a specific weighted inner product,

the final-time free solution, ffp, on the initial-time pinned solution as

B0 =< q̂†p0 , ffp >E . (25)

with q̂†p0 the adjoint U-tube pinned-mode.

We are now entering the pinned-phase (panel (b)). The initial contact angle is θs+∆/2 =

θs + θ+, and the time-evolution of the system is described by (20b). The contact angle

progressively changes with a fixed contact line elevation efp and once it reaches the value

θs − ∆/2 = θs + θ−, the second transition occurs. We impose again the continuity of the

flow variables, i.e. qf (0) = qp (Tf − Tp),

efpqps +
(
B0q̂p0e

(−σp0+iωp0)(Tf−Tp) + c.c.
)

= θ−qfs + (A0q̂f0 + c.c.) , (26)

with

θ− = efp/F0 +
(
B0 e

(−σp0+iωp0)(Tf−Tp) + c.c.
)
, (27)

so that Eq. (26) can be rearranged as

A0q̂f0 + c.c. = B0 (q̂p0 − qfs) e
(−σp0+iωp0)(Tf−Tp) + c.c. ≡ fpf . (28)

We thus project the final-time pinned solution on the initial-time free solution, so as to

determine the new amplitude A0.

A0 =< q̂†f0 , fpf >E . (29)

with q̂†f0 the adjoint U-tube free-mode.

The system enters the lower free-phase (panel (c)) and the cycle is repeated over again.

Each projection eventually induces a rapid loss of total energy in the liquid motion and

contributes to its nonlinear damping. After a few cycles, the inertia of the oscillating liquid

column will no longer be sufficient to surpass the static solid-like friction and the system

will get trapped in the pinned-phase. The time-instant associated with the last projection

from the free to the pinned dynamical phases, i.e. T lastp , provides a univocal definition of the

final time of arrest for the contact line, tarr = T lastp . Note that, according to the prescribed

contact angle model of Fig. 12, the method predicts that for t lg tarr the contact line speed is
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strictly zero and the contact line elevation remains fixed. The secondary fluid bulk motion

following the arrest of the contact line will decay exponentially under the effect of the linear

viscous dissipation characteristic of the pinned dynamics.

C. E-norm inner product and definition of adjoint modes

We note that, owing to the axisymmetric configuration, the inner product employed in

this context differs from that used in Ref. 1:

< w,u >E=

∫

V

uwuv rdrdz +

∫

z=η0(r)

[
ηwηv +

1

Bo

(
1

(
1 + η20,r

)3/2

)
∂ηw
∂r

∂ηv
∂r

]
rdr (30)

where v = {uv, pv, ηv}T and w = {uw, pw, ηw}T are two generic vectors, the bar designates

the complex conjugate and the subscript E stands for energy. We recall that (30) represents

the total energy norm, where the volume integral measures the kinetic energy, whereas the

two boundary terms are, respectively, the gravitational and surface potential energies. We

also note that the surface integral associated with the surface energy (curvature term) is

further weighted by
(
1 + η20,r

)−3/2
, resulting from the linearization around an initially curved

static meniscus, η0 (r) 6= 0.

As a final comment, in Eqs. (25)-(29) we have invoked the concept of adjoint modes,

solutions of the adjoint linearized homogeneous problem, whose formal derivation is given

in the supplementary material of Bongarzone et al. (2021) [1]. In this regard, here we limit

ourselves to reporting the final result, according to which

q̂†f,p =





û†

p̂†

η̂†




f,p

=





−û
−p̂
η̂




f,p

6= q̂f,p, λ†f,p = −σf,p − iωf,p = λf,p. (31)

The abovementioned supplementary notes also provide a demonstration that direct modes,

q̂f,p and adjoint modes, q̂f,p, form a bi-orthogonal basis with respect to the scalar prod-

uct (30), with the adjoint modes that appear, therefore, as the most suitable choice for the

projection step.

VI. COMPARISON WITH EXPERIMENTS AND RESULTS

A. Contact line dynamics and finite-time arrest

In this section, the most relevant results are discussed. First, we compare the contact

27



line dynamics predicted by the projection method versus that predicted by the 1dof model

and that measured experimentally by Dollet et al. (2020) [2]. This comparison is outlined

in Fig. 13 for different initial contact line elevations, hin. The improvement brought by

the present projection method is not striking from this comparison. Both the 1dof model

and the present model are in fairly good agreement with experiments. Nevertheless, we

can see, e.g. in panels (a,b,c) that our model predicts a few stick-slip transitions preceding

the final contact line arrest. These time periods, indicated in Fig. 13 by the horizontal

red arrows, correspond to the intervals comprised between a transition from the free- to

the pinned-phase, i.e. at t = Tp, and the consecutive one from the pinned- to the free-

phase, i.e. at t = Tf . Within the time interval Tp − Tf , and owing to the imposed contact

angle model (12), the algorithm numerically prescribes zero contact line speed at a fixed

elevation. Although over these intervals the experimental contact line elevation appears to

remain only approximatively constant, we can infer that those dynamical phases visible in

the experiments correspond to phases where the contact line is almost or fully pinned.

An interesting aspect highlighted by the projection model is related to the dependence

of the finite-time arrest for the contact line, tarr, on the initial elevation, hin. The time

arrest of the contact line is indicated in Fig. 13 by the vertical black dashed lines, while its

dependence on hin is characterized more in detail in Fig. 14, which shows how tarr follows a

step-like function. Unfortunately, the available experimental data are not sufficient to assess

whether the same trend realistically occurs.

From our knowledge, such a trend has not been reported in the literature yet, but it

appears intuitively correct. Indeed, the arrest of the contact line occurs when, after a few

oscillation cycles, the inertia of the system is no longer sufficient to overcome this static

friction. Fig. 14 suggests that there are ranges of initial elevations hin for which the final

time of arrest is tarr remains unchanged. To prolong the oscillatory contact line motion, the

system needs to surpass this final energy barrier, which is only possible by starting from a

sufficiently larger potential energy, and thus, from a larger hin. These intuitive observations

hence call for further dedicated measurements of tarr as a function of hin and in controlled

wetting conditions.

B. Global damping properties and frequency modulation

As the projection method deals with the full hydrodynamic system, we have access to
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Figure 13. Contact line elevation versus time for different initial conditions. Dashed line: 1dof

model. Red solid lines: predictions from the projection model. Markers: experiments by Dollet et

al. (2020). We note that in performing the calculation, we have considered an effective tube length

of 16.2 cm, where an excess length of l′ = 1.6 cm is introduced to take into account the fact that

the cross-section along the curved part of the tube is not constant due to the fabrication process.

See Ref. 2 for further details.

all the degrees of freedom of the system. Looking away from the contact line and rather

focusing the attention, for example, on the centerline dynamics at r = 0, the useful insights

brought by the present approach are evident. The centerline dynamics is of course affected

by what happens at the contact line, but at the same time, it does not undergo a finite-time

arrest. The associated time series, computed for different initial elevations, is reported in

Fig. 15.

An inspection of this time-signal evolution reveals, consistently with previous experimen-
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Figure 14. Finite time of arrest versus the imposed initial elevation. Black solid line: analytical

prediction from the one-degree-of-freedom model proposed by Dollet et al. (2020). White triangles:

experimental measurements by Dollet et al. (2020). Colored circles: projection method. The black

dashed line only serves to guide the eyes.

tal observations [50], how the contact line arrest is followed by the secondary bulk motion

characterized by an exponential relaxation with a constant damping coefficient (i.e. the

final linear trend in the log-scale plot of Fig. 15), which is completely overlooked by the 1dof

model. By monitoring the nonlinear decay of such a signal, we can estimate the damping

rate and the modulation of the oscillation frequency as a function of the time-dependent

oscillation amplitude

The result of this procedure is explained and illustrated in Fig. 16. Similarly to the

weakly nonlinear analysis formalized by Viola & Gallaire (2018) [54], the 1dof model pre-

dicts the initial increase in the damping rate, DR (t), but it diverges around t ≈ tarr. This

finite-time singularity is not surprising as the contact line arrests at t = tarr, but it is only

locally correct, and it does not represent a good description of the global damping rate. On

the contrary, the damping rate resulting from the projection shows an increase as the wave

amplitude decreases, until it reaches a maximum value, at a time instant close to t = tarr

after which it decreases to a nearly constant value. Once the pinned dynamics is established,

the damping rate is approximately constant and equal to the viscous damping coefficient of

the pinned U-tube mode. Concerning the frequency modulation in time, we find a smooth
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Figure 15. Centerline free surface elevation, i.e. r = 0 and z = 0 (in log-scale), versus time for

different initial elevations, hin. The grey solid lines show the actual signal produced by the pro-

jection method, while the coloured solid lines indicate the amplitude envelope only. The coloured

dashed lines correspond to the analytical prediction given by the single-degree-of-freedom model

employed by Dollet et al. (2020). An almost abrupt change in the trend of these signals is well

visible. This is a clear sign of the final transition to a pinned contact line dynamics following the

contact line arrest.

evolution from the characteristic value of the initially dominant free U-tube mode to a fi-

nal value, reached for t ≈ tarr and corresponding to the natural oscillation frequency of

the pinned U-tube mode. Although no results concerning the damping rate and frequency

modulation in time were reported in Ref. 2, the initial and final values match well the ex-

perimental ones (as indicated in Fig. 16 by the values of ωfreeexp , ωpinnexp and σpinnexp ), and the

intermediate behaviour is fully consistent with that experimentally reported by Cocciaro et

al. (1993) [50] in a sloshing configuration.

We note that the centerline elevation, as the contact line elevation, is also a local measure-

ment, but it is more representative of the overall dynamics. Similar trends for the damping

and frequency are found by monitoring, e.g., the decay of the total energy (see Ref. 1), which

represents instead a global observable.
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Figure 16. (a) Dimensional damping rate and (b) frequency modulation versus time at different

initial conditions. The damping rate, DR (t) is computed as the logarithmic decrement of the

amplitude of the centerline free surface elevation, shown in Fig. 15. The frequency is computed

from the same signal by evaluating the period from peak to peak, with the resulting value that

is then roughly assigned to the midpoint of the corresponding time interval (coloured filled circles

in (a) and (b)). The coloured solid lines represent the best fit (smoothing splines) of these time

signals, whereas the coloured dashed lines correspond to the analytical prediction given by the

single-degree-of-freedom model employed by Dollet et al. (2020).

VII. CONCLUSIONS

In this work, we have employed the projection method developed in Bongarzone et al.

(2021) [1] to study the natural relaxation dynamic of small amplitude liquid oscillations in

a U-shaped tube, as experimentally investigated by Dollet et al. (2020) [2].

First, we attempted to rationalize the linear dissipation properties of the system in both

the free and pinned dynamical phases so as to explain the fitting parameter used in the

1dof model of Dollet et al. (2020) (see Eq. (4a)). After having numerically estimated the

effect of three-dimensionality, i.e. of the tube curvature, and the contribution of the Stokes
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boundary layers on the overall linear damping coefficients (see Appendices A and B), a linear

Hocking’s law for the dynamic variation of the contact angle with the contact line speed

has been accounted for in order to compensate for the missing dissipation, hence allowing

for a good match with experiments. The combination of such a linear law with the static

hysteresis range considered in Dollet et al. (2020) translates into the phenomenological

nonlinear contact line model already used in Refs. 1, 24, and 29.

The full hydrodynamic system, supplemented with this contact line model, has been

then studied in the framework of the projection approach, so as to compare the resulting

predictions with those from the simple 1dof damped pendulum model employed in Dollet

et al. (2020) and with their experimental measurements. When looking at the contact line

dynamics only, the improvement brought by the present model is not striking. Both the 1dof

model and the present model are in fairly good agreement with experiments and predict

well the contact line arrest. However, our model seems to correctly capture some of the

stick-slip transitions occurring, in a more pronounced way, just before the finite-time arrest.

If one is interested in having a quick estimation of the finite-time arrest for the contact line,

we, therefore, recommend using the damped pendulum model.

Nevertheless, although the peculiar contact line dynamics, with its stick-slip motion and

finite-time arrest, is the main responsible for the initial nonlinear dissipation of the system, it

is not fully representative of the global dynamics. Through the projection method, we have

access to all the degrees of freedom of the system. This allowed us to explore, for example,

the centerline dynamics, which is affected by what happens at the contact line but does not

undergo a finite-time arrest. An inspection of this time-signal evolution reveals, consistently

with previous experimental observations [50] in the context of sloshing dynamics, how the

contact line arrest is followed by the secondary bulk motion characterized by an exponential

relaxation. By monitoring the nonlinear decay of such a signal obtained via the projection

approach, we have been able to estimate the damping rate and the oscillation frequency

(both amplitude-dependent) of the system, hence correctly capturing the transition from an

initial stick-slip motion to a final pinned dynamics, which has been so far overlooked by the

theoretical analyses reported in the literature.

The projection method, here applied to the case of a piecewise linear contact line model,

has already been generalized to any smooth non-linear contact line dynamics, e.g. a cubic

law according to the Dussan model (see Ref. 1). Replacing the linear Hocking’s law with
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a more sophisticated nonlinear law, e.g. cubic, and combining the latter with a range of

static hysteresis is of interest and appears natural. Other future perspectives include the

introduction into the model of small amplitude external forcing, i.e. axial time-harmonic

excitations, and the extension to three-dimensional non-axisymmetric oscillatory dynamics,

which is of great relevance for sloshing-related problems [12–14] and in the description of

oscillatory sessile drop dynamics [25, 48, 51, 52].
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Appendix A: Effect of the tube curvature on the damping

In this Appendix, we perform the full three-dimensional eigenvalue analysis for a pinned

contact line. The latter condition is easier to resolve numerically, as no stress singularity

emerges from the imposition of a no-slip wall. Although the flow dynamics for a moving

contact line and the resulting damping properties may differ from the one considered here,

the purpose of this appendix is simply to have a first estimation of the effect of the curved

part of the tube on the global linear damping coefficient. This computation serves us to

partially justify the fundamental assumption of neglecting the tube curvature. With respect

to the real experiment, we can only obtain a rough estimation, as the tube used by Dollet et

al. (2020) [2] shows a significantly smaller cross-section in its curved part than in its straight

parts, where it is circular of uniform radius a = 8.15 mm within a few tens of microns. As

it is difficult to measure this variation locally, we lack information to mesh numerically the

actual geometry with full fidelity. For these reasons, we will simply consider a constant

cross-section of radius a.

Thus, the linearized governing equations with their boundary conditions have been im-

plemented in the finite-element software COMSOL Multiphysics v5.6. To mesh the physical
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Figure 17. (a) Three-dimensional natural U-tube mode for a pinned contact line. The full domain

has been resolved, but only a quarter of it is shown here for visualization purposes. (b) Axial

velocity profile plotted at different sections along the tube, as indicated by the coloured arrows. The

liquid column length in (a) and (b) has been set to l = 14.6 cm. (c) Dimensional oscillation period,

T = 2π/ω, associated with the pinned contact line dynamics and as a function of the liquid column

length, l. (d) Same as in (c), but for the dimensional damping coefficient. In (c) and (d), empty

circles correspond to the present 3D calculation, black crosses are from the axisymmetric model

discussed throughout the manuscript, while filled black diamonds are experimental measurements

from Ref. 2. Only one measurement has been reported for the oscillation period.
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domain, we have adopted a hybrid hexahedrical-tetrahedrical mesh. Specifically, tetrahe-

dral elements were used in the interior, while hexahedron elements were adopted in the

neighbourhood of the free surface, sidewalls and bottom, where, in addition, boundary layer

refinements were used to better model the viscous Stokes boundary layers. The linearized

equations were manually written in their weak formulation using the Weak Form PDE tools

available in the software. We used P2 for the velocity field and P1 elements for the pressure

field, so as to avoid spurious pressure mode. The interface variable was discretized with P2

elements. Globally, the grid is made of approximately 300 000 degrees of freedom, for which

convergence was tested.

The results of this computation are reported in Fig. 17. Panel (a), gives a picture of the

three-dimensional natural U-tube mode for a pinned contact line: the full domain has been

resolved, but for visualization purposes, only a quarter of it is shown. The non-dimensional

axial velocity profile is reported in panel (b) at different locations along the tube as indicated

by the colored arrows. We can see how the effect of the curvature is locally important from

the asymmetry in the velocity profile: the velocity is higher where the curvature is higher.

This asymmetric profile gradually adapts to a symmetric plug-like flow in the straight arm

of the tube, and eventually, it relaxes to a bell-like profile at the interface. This last profile

seems peculiar, but it is consistent with the fact that the axial velocity at the surface equals

the time derivative of the interface, which, for a pinned dynamics, has indeed a bell-like

shape (see §IV).

Although the curvature seems to affect the flow locally, Fig. 17(c) and (d) suggest that it

does not significantly influence the eigenvalue properties of the system, i.e. the oscillation

period (panel (c)) and the damping coefficient (panel (d)). Specifically, the oscillation period

predicted by the axisymmetric model is only slightly larger than that predicted by the full

3D calculation, and both trends, with respect to variations of the liquid column length, are

consistent with the experimental measurements.

The damping coefficient is always larger than that computed via the axisymmetric model.

This increase is attributable to three-dimensional effects, and to a slightly higher oscillation

frequency. However, such an increase is bounded to less than 3% for the lengths l considered.

Hence, neglecting the curved part and employing a simplified axisymmetric model appears

as a justifiable assumption for the geometrical and fluid properties examined in this work.
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Appendix B: Theoretical estimate of the Stokes boundary layer contribution to the

dissipation and comparison with the numerical slip-length model

In the first part of Sec. IV B, which deals with a description of the natural properties of the

system in the free-phase, we have computed numerically the damping coefficient associated

with the dissipation originating in the oscillating Stokes boundary layer at the lateral wall.

This numerical estimate, based on an exponentially evanescent slip-length model (10)-(11),

has provided a non-dimensional averaged damping value equal on average to σ ≈ 0.027,

which is less than half the one needed for a good agreement with the data (σ ≈ 0.6). Such

a disagreement has then motivated the introduction of an extra source of dissipation origi-

nating in the contact line region, which has eventually led to the desired value of σ.

The use of the phenomenological contact line model (16) and, specifically, of the cho-

sen value of the contact line coefficient α 6= 0, has already been justified throughout the

manuscript. Nevertheless, it is still worth making sure that the original numerical estimate,

obtained for α = 0, represents in the first place a good prediction of the lower bound for

σ, so as to not overfit the value of α required to increase σ up to the desired experimental

value.

In this Appendix we therefore attempt to derive an analytical estimation of the damping

coefficient produced by the Stokes boundary dissipation. To this end, as in Sec. IV B, we

neglect the tube curvature and we assume a pure free-end edge contact line condition, i.e.

α = 0. Additionally, for the sake of mathematical tractability, we ignore here the curvature

of the static interface, i.e. η0 (r) = 0, by taking θs = 90◦. Note that the experimentally mea-

sured value is θs = 80.5◦; this angle produces a static meniscus whose characteristic length

is approximately 5-6% the tube radius, i.e. its influence is likely negligible (see Fig. 5).

Under these hypotheses, the problem of free-phase U-tube oscillations is formally equiv-

alent to the Stokes second problem for axial oscillations governed by

∂w

∂t
= ν

(
1

r

∂w

∂r
+
∂2w

∂r2

)
, w|r=a = W cosω0t, (B1)

with the additional constraint the the axial velocity remains bounded for r → 0. The

solution of Eq. (B1) gives the axisymmetric axial velocity profile inside the cylinder, i.e. for
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Figure 18. (a) Non-dimensional, σ, and (b) dimensional, σ = σ
√

2g/l, damping coefficient versus

the water column length, l (cm) and associated with a free contact line dynamics of the funda-

mental U-tube mode for α = 0 rad. Blue diamonds: values computed fully numerical eigenvalue

calculation by accounting for the variable slip length model (16). The red solid lines correspond

to the analytical estimate of the damping coefficient as estimated in this Appendix according to

equation (B12). The vertical black dashed lines in (a) and (b) indicate the length of the U-turn

region, πR ≈ 7 cm. Below this length, the liquid column is all contained in the U-turn region.

In proximity and, particularly, below this limit value (as indicated by the grey-shaded regions),

neglecting the curvature of the tube is no longer a justifiable assumption.

0 ≤ r ≤ a,

w (r, t) = W Real



I0

(
r
√

iω0/ν
)

I0

(
a
√

iω0/ν
)eiω0t


 , (B2)

where I0 is the modified Bessel function of the first kind.
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We can then compute the total force exerted by the fluid on the lateral wall as

F = µ
∂w

∂r

∣∣∣∣
r=a

= (πal) µW Real



√

iω0

ν

I0

(
r
√

iω0/ν
)

I0

(
a
√

iω0/ν
)eiω0t


 , (B3)

where the term (πal) represents the total wall surface for half tube of radius a and length

l/2. The associated power reads

P = F · w|r=a = (πal) µW 2 Real



√

iω0

ν

I1

(
a
√

iω0/ν
)

I0

(
a
√

iω0/ν
)eiω0t


 Real

[
eiω0t

]
. (B4)

The power dissipated by viscous forces during the steady-state oscillatory motion can be

expressed as

〈Ė〉 = −ω0

2π

∫ 2π
ω0

0

P dt = −ω0al

2
µW 2C. (B5)

with brackets 〈 . 〉 denoting the temporal average over one period and the auxiliary coefficient

C defined as

C =

∫ 2π
ω0

0

Real



√

iω0

ν

I1

(
a
√

iω0/ν
)

I0

(
a
√

iω0/ν
)eiω0t


 Real

[
eiω0t

]
dt. (B6)

Outside the thin Stokes boundary layers, the U-tube linear dynamics can be approximated

by a plug flow with an interface rigidly oscillating in time at natural oscillation frequency

ω2
0 = 2g/l and without deforming in the radial direction.This simple dynamics can be

described by introducing the generalized coordinate q (t), such that the interface position η

and the axial velocity w read, respectively, η = q and w = q̇ (t).

Let us now evaluate the total mechanical energy E, sum of the kinetic (K) and potential

(P ) energies, associated with the oscillatory motion:

E = K + P =
ρ

2

∫ 0

− l
2

∫ 2π

0

∫ a

0

w2 rdrdφdz +
ρg

2

∫ 2π

0

∫ a

0

η2 rdrdφ =
ρg

2
πa2

(
q̇2

ω2
0

+ q2
)
.

(B7)

Assuming the ansatz q (t) = Dq (t) cosω0t, one finds

E =
ρgπa2

2

[
D2
q + Ḋq

(
Ḋq

cos2 ω0t

ω2
0

−Dq
sin 2ω0t

ω0

)]
≈ ρgπa2

2
D2
q . (B8)

with the last approximation on the right-hand side that holds for small damping, i.e. when-

ever Dq (t) represents a slow-time damping process over the characteristic fast time-scale
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typical of the oscillations at frequency, i.e. ∼ 1/ω0, so that ω−10 Ḋq � Dq. The time-

derivative of the total energy then reads

Ė = ρgπa2DqḊq. (B9)

In contradistinction with the standard Stokes second problem, where the lateral wall is

oscillating harmonically at a frequency ω0 with amplitude W , in the U-tube dynamics the

sidewall is fixed and the liquid column is oscillating at frequency ω0 with amplitude |w| = |q̇|.
Recalling that 〈Ė〉 = −ω0al

2
µW 2C, we can thus express W 2 as |w|2 = |q̇|2 = ω2

0D
2
q . Lastly,

by assuming that 〈Ė〉 ≈ Ė,

Ė = ρgπa2DqḊq = −ω
3
0al

2
µC D2

q = 〈Ė〉 =⇒ Ḋq = −ω0νC

πa
Dq, (B10)

where we have used ω2
0 = 2g/l, and

Dq = Dq0 exp

(
ω0νC

πa
t

)
=⇒ E =

ρgπa2

2
D2
q0︸ ︷︷ ︸

E0

exp

(
2ω0νC

πa
t

)
, (B11)

which eventually leads to the analytical estimation of the damping coefficient σ as

E

E0

=

(
Dq

Dq0

)2

= exp

(
2ω0νC

πa
t

)
= exp (−2ω0σt) =⇒ σ =

νC

πa
, (B12)

which must be compared with the numerical estimation reported in Fig. 9. This is done

in Fig. 18. Both the theoretical and numerical models neglect the curvature of the tube

and the extra contact line dissipation. We can see that the two predictions compare very

well, hence confirming that the slip-length model (10)-(11) allows for a fair estimation of

the Stokes boundary layer dissipation, as already suggested by the analysis of Bongarzone &

Gallaire (2022) [58]. This calculation also further confirms that the laminar boundary layer

dissipation alone is not sufficient to justify the experimentally fitted damping coefficient.

The effect of U-tube curvature on the damping has been discussed in Appendix A. The

increase in the damping attributable to the three-dimensionality of the flow in the U-turn re-

gion appears too small to close to the gap with experiments, hence reinforcing the hypothesis

that the additional dissipation indeed comes from the contact line dynamics.

Appendix C: Sensitivity analysis to the law describing the variable slip region and to

the value of its penetration depth

In §IV B, by employing the slip-length model introduced in §III B [58], we have computed

the damping coefficient associated with the free dynamical phase for the contact line. Within
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Figure 19. Different slip-length models employed in this Appendix: (a,b) exponential, (c,d) gaus-

sian, (e,f) linear, (g,h) bell and (i,j) inverse. The abscissa in panels (a,c,e,g,i) is in linear scale,

whereas the logarithmic scale is used in panels (b,d,f,h,j). Black solid lines show the various con-

tinuous functions, while markers represent the Chebyshev collocation points actually resolved. For

the specific calculations outlined in this Appendix, 40 radial and 200 axial points were used.
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this numerical approach, we have postulated that the slip-length ls (z) depends exponentially

on the distance z away from the contact line. Such a dependence was suggested by Ting &

Perlin (1995) [36] as an alternative to their discontinuous linear law.

Those two dependences are not the only models that have been proposed in the literature:

similarly to the discontinuous linear decay, Fullana (2022) [60] has adopted a discontinuous

law consisting of a bell function describing the contact line region and a constant (zero)

value starting at a given distance δ away from the contact line; in large-scale molecular

dynamics simulations on two-phase immiscible flows, Sheng et al. (2004) [59] showed that

there is a partial-slip region associated with the moving contact line with a value of the slip

depending inversely on the distance z from the contact point; furthermore, although we are

not aware of a similar model being already proposed in the literature, the gaussian function

appears as a natural smoother version of the exponential model employed in this work.

Given the variety of slip-length models proposed in prior studies, it is worth discussing

how different z-dependence of ls (z) may affect the results, e.g. the calculation of the global

damping, σ and oscillation period, T , for the system here investigated. This Appendix

is precisely dedicated to address this point. In the following, we repeat the calculation

outlined in §IV B, but replacing the (i) exponential model with different laws, namely, the

(ii) gaussian, (iii) linear, (iv) bell and (v) inverse functions. All of these laws, listed and

represented in Fig. 19, require the values of three parameters to be assigned. By analogy

with §III B and Ref. 58, here we impose a large value of the slip-length at the contact line,

e.g. lcl = 102, to mimic the stress-free condition and, simultaneously, we require that the

slip assumes a small value, e.g. lδ = 10−4 at a given distance δ below the contact point so to

reproduce the no-slip condition. Note that the specific values of lcl and lδ are not important

as soon as they are, respectively, large enough, lcl � 1 (& 102), and small enough, lδ � 1

(. 10−4) [58]. The sensitivity to the value of the penetration depth δ is then carefully

explored.

The results of this procedure are reported in Fig. 20, which shows how the different slip-

length functions impact the predicted damping coefficient and oscillation period. We observe

that the influence of the shape function is significant only at large values of δ, i.e. when a

large portion of the lateral wall behaves as a slip wall. As the value of δ is progressively

decreased, the relative differences between the various laws rapidly decrease and all models

eventually prescribe the same values of damping and frequency.
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Figure 20. (a) Dimensional damping coefficient associated with the fundamental U-tube mode,

σ = σ
√

2g/l, numerically computed for a fixed water column length, l = 14 cm and for a free

contact line dynamics α = 0 rad, but changing the depth-dependent slip-length model and its

main free parameter δ, i.e. the extension of the slip region. Different markers correspond to

different models, namely, (circles) exponential, (squares) gaussian, (triangles) linear, (diamonds)

bell and (crosses) inverse. The black dashed line indicates the analytical estimate according to

equation (B12) for l = 14 cm. The abscissa value
√

2ν/ω0, with ω2
0 = 2g/l, denotes the thickness

of the Stokes boundary layer. (b) Corresponding dimensional oscillation period. The black dotted

line corresponds to the theoretical value 2π/ω0 = 2π
√
l/2g and serves to highlight the viscous

correction introduced by the sidewall boundary layer, whose numerical description according to

the variable slip-length model adopted. The viscous frequency correction to the theoretical value

(horizontal dotted line) is also indicated by the black vertical double-headed arrow.

Given that the theoretically predicted value of σ requires a small δ to be numerically

retrieved, we can argue that the shape of the slip function has not a relevant impact on the

global properties of the system investigated in this work.
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