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Von Karman vortex street past a permeable circular cylinder: two-dimensional flow and1

DMD-based secondary stability analysis2
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We investigate the wake structure and the three-dimensional stability of the two-dimensional von Kármán vortex 
street developing in the wake of a permeable circular cylinder. The flow through the porous medium, assumed 
homogenous and isotropic, is described by the Darcy law, with a Navier slip coupling condition at the interface 
with the pure fluid r egion. The two-dimensional and steady flow past the cylinder is initially co nsidered. Per-
meability induces a downstream displacement of the recirculation region, which reduces its dimensions until it 
eventually disappears. Linear stability analysis shows that the flow is progressively stabilized as permeability 
increases. We identify a critical value of permeability beyond which the steady wake is linearly stable in-
dependently of the Reynolds number. Two-dimensional, time-dependent simulations are then carried out. A 
progressive downstream displacement of the region of onset of the vortex shedding is observed, together with a 
decrease of the oscillation frequency. Oscillations of aerodynamic forces are progressively quenched with per-
meability owing to the downstream displacement of the onset region of the vortex shedding. At the same time, 
traveling vortices are observed far downstream of the body, in opposition with the impervious case, character-
ized instead by the formation of two shear layers of opposite vorticity, at very large distances from the body. 
We perform linearized simulations for the evolution of three-dimensional perturbations on the two-dimensional 
von Karman vortex street. The growth rate and the spatial structure of the perturbations are extracted from 
such linearized dynamics by employing a Sparsity-Promoting Dynamic Mode Decomposition (SP-DMD). As 
permeability increases, the unsteady vortex street past the cylinder is progressively stabilized with respect to 
three-dimensional perturbations until the transition to three-dimensionality is prevented. We identify a critical 
value of the permeability beyond which the vortex shedding preserves its two-dimensionality, at least in the 
considered parameters space.

I. INTRODUCTION
28

The interaction between fluid flows and slender bluff bodies is a classical and relevant topic in fluid mechanics. Typical29

examples in civil and marine engineering are vibrations of pipelines lying on the seabed, interaction of currents and waves with30

off-shore structures in ocean engineering, skyscrapers, chimney stacks and suspension bridges [1]. These slender structures are31

often subject to an alternate shedding of vortices in the near wake, so-called von Karman vortex street, which may lead to large32

fluctuating forces on the body along both the flow direction and transversal one and may cause structural vibrations, acoustic33

noise, or resonance, with possible structural failure of the structures subject to these oscillating forces (cf. Williamson [2] and34

references therein for a review). Several studies focused on the problem of reducing the coherence of vortex shedding along35

the spanwise direction, often through surface modifications, e.g. appendages or helical cables [3, 4], thus reducing oscillating36

forces. However, Vortex Induced Vibrations (VIV) can also be advantageously used for energy harvesting [5, 6]. Recently, also37

microelectromechanical (MEMS) wind-energy harvesters composed of small cylindrical oscillators attached to piezoelectric38

MEMS devices have been proposed as a potential means of powering small off-grid sensors in a cost-effective manner due to the39

easy integration of the energy harvester and sensor on the same silicon chip [7]. As concerns environmental flows, deep-sea glass40

sponges (E. aspergillum) are tall, permeable, cylindrical shells anchored to the seabed that extend through the benthic boundary41

layer, composed of amorphous hydrated silica arranged in a highly regular and hierarchical structure. These sponges provide a42

natural shelter for a family of shrimps which feed themselves through the nutrients in suspension in the benthic boundary layer.43

The skeleton of E. aspergillum is characterized by exceptional structural properties, combined with remarkable hydrodynamic44

properties induced by their permeable structure, e.g. reduction of hydrodynamic stresses and the support of coherent internal45

recirculation patterns at low flow velocity [8].46

The latter example shows how permeable structures offer an efficient way to maximize the structural and hydrodynamic47

performance of a particular flow configuration [9]. Permeability of the body can be achieved through active blowing systems,48

where a fixed velocity is imposed at the boundary [10], or in a passive way, e.g. exploiting the flow modifications induced49

by a microscopic structure [9]. Nature is always an invaluable source of inspiration when new technical solutions for optimal50

performances are needed. Dandelion seeds are spread by wind thanks to a bundle of radially oriented fibers, called pappus.51

Cummins et al. [11] showed the presence of a recirculation region that, instead of being attached to the rear of the object as52
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in the impervious case, moves downstream of the body. This wake configuration acts like a parachute and makes it arguably53

possible for the seeds to travel for long distances under the effect of light breezes. Similar studies on idealized permeable disks54

mimicking the dandelion pappus showed similar flow patterns [12], associated with hydrodynamic stability of the wake in the55

range of permeability and Reynolds numbers typical of dandelions [13]. The introduction of permeability thus offers interesting56

perspectives on flow control of wakes past bluff bodies. A documented study can be traced back to Castro [14], who studied the57

flow past a perforated flat plate, for Reynolds numbers of the order of 104. In the considered cases, the flow exhibited a vortex58

shedding, whose mean recirculation region was detached from the body. Also, Castro observed a decrease of the drag exerted59

on the porous plate. A similar detachment was analytically predicted by Steiros et al. [15], for perforated plates. A theoretical60

analysis on the drag exerted by perforated plates in free-flows with Re ∼ 1000 was performed by Steiros & Hultmark [16],61

who showed a similar decreasing trend of the drag. The distribution of pores may also influence the aerodynamic forces [15].62

The drag behavior with permeability was also analyzed in the creeping flow regime by Strong et al. [17]. Other investigations63

include also the effect of the fluid–structure interaction such as flexibility of porous strips [18]. The detachment of the mean64

recirculation region is associated with a downstream displacement of the vortex shedding onset, as shown by recent experimental65

[19] and numerical [20] studies. Ledda et al. [21] highlighted a similar effect on the steady flow at low Reynolds numbers past66

thick flat plates, characterized by the detachment and shrinking of the recirculation region as permeability was increased, until67

disappearance of the counterflow. A critical permeability threshold was identified, beyond which the onset of von Karman vortex68

street was prevented, regardless of the considered Reynolds number. Similar behaviors were observed in the case of permeable69

disks [12, 22], spheres [23, 24] and circular cylinders [25]. In the latter paper, the authors studied the two-dimensional, steady,70

flow past a circular permeable cylinder, showing the emergence of a detached recirculation region at low Reynolds numbers.71

In the impervious case, it is well known that the steady flow past a circular cylinder undergoes a Hopf bifurcation at Re = 46.7,72

which leads to the previously-mentioned periodic shedding of vortices [26, 27]. The periodic unsteady wake remains two-73

dimensional until Re ≈ 190, beyond which the vortex shedding becomes three-dimensional, while preserving a strong two-74

dimensional coherence [28, 29]. This secondary instability of the wake has been studied both experimentally [30–32] and75

theoretically [28, 29, 33]. Floquet stability analysis stems from the linearization of the flow equations around a time-periodic76

baseflow. The stability of the system can be inferred by studying the eigenvalues of the so-called monodromy operator, which77

maps the solutions from one period to the successive one [34]. The transition to a three dimensional flow is characterized78

by two different linear modes distinguished respectively by a long (mode A, at Re ≈ 190) and short (mode B, at Re ≈ 260)79

wavelength in the spanwise direction [35]. Barkley & Henderson [33] numerically confirmed the experimental observations80

made by Williamson [35] via a linear Floquet stability analysis on the two-dimensional, periodic, baseflow. The authors identified81

mode A as the leading mode for the three-dimensional transition of the von Karman vortex street past a circular cylinder. In these82

bluff body wakes [36], the physical mechanism originating in the development of mode A (the wavelength of which scales with83

the vortex core size) has been associated with the so-called elliptic instability ([37, 38] and [39] for a review), while mode B,84

which develops at a higher Reynolds number and has a shorter wavelength, was shown to result from the hyperbolic instability85

[40]. In contrast, for slender body wakes, two competing modes of opposite symmetry dominate with comparable growth-rates86

and wavelengths and they can both be unambigously and quantitatively attributed to the elliptic instability [41]. The growth rate87

of the elliptic instability is proportional to the strain rate at the point of maximum vorticity, which is linked to the intensity of88

the deformation of the vortex cores.89

However, rather than directly evaluating the eigenvalues of the monodromy matrix, Floquet analysis is often performed by90

time-marching of the linearized equations for several periods, combining it with iterative Arnoldi-like methods [33]. Such91

methods are based on an approximation of the high-dimensional system matrix by projecting it onto a lower-dimensional Krylov92

subspace, hence allowing a rather efficient extraction of the dominant eigenvalues. Data-driven techniques like Dynamic Mode93

Decomposition (DMD) have gained attention for their ability to extract dynamic flow features from experimental or numerical94

data [42–47]. The DMD algorithm allows for the data sequence to be approximated as a Krylov sequence. However, if the95

dynamics is produced by a linear process, there is no approximation and the DMD eigenmodes and eigenvalues at convergence96

are equivalent to those computed by a global stability analysis via Arnoldi-like methods based on a Krylov subspace [42]. In our97

framework, the snapshot sequence is produced by the linear flow evolution of small perturbations around a T -periodic base-flow,98

with T the oscillation period. In such a scenario, Floquet and DMD modes can be directly linked with each other [48], hence99

suggesting DMD as an alternative to more classical Floquet stability analysis tools. In this work, DMD will be employed to100

characterize the three-dimensional secondary instability of the flow past a permeable circular cylinder.101

102

The objective of this paper is to explore the three-dimensional stability and transition scenarios in the wake past porous circular103

cylinders. In particular, the yet unexplored role of permeability in modifying the two-dimensional von Karman vortex and its104

three dimensional stability properties is investigated. The selected flow configuration, i.e. the flow past a circular cylinder, is105

prototypical for bluff body wakes, and the transition scenario has been largely investigated in the literature for the impervious106

case. To this purpose, the first choice concerns the method employed to describe the flow through the porous microstructure.107

Direct simulations of the flow around and within the permeable matrix are cost challenging due to the large range of length108

scales that characterize the flow dynamics through porous bodies [8, 49, 50] and potentially limited by the choice of a specific109

microscopic configuration. Techniques based on multiscale expansions and averaging techniques (homogenization, cf. [51]) can110
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FIG. 1. Sketch of (a) flow configuration and (b) computational domain.

reduce computational costs related to these multiscale problems by taking advantage of scales separation that is present in the111

dynamics of a fluid phase through a solid matrix. Homogenized models effectively recover the effects of the permeability on the112

whole fluid phase in terms of averaged variables, both in the case of thin [9, 52, 53] and thick [54–56] permeable objects, or when113

treating slip on a rough wall [57–59] or at the interface between a porous object and a free fluid region [60, 61]. Homogenization114

techniques have the great advantage to provide a rigorous framework that links the microstructure to macroscopic properties115

[62]. Therefore, the homogenized model does not suffer from the limitations stemming from the choice of a particular geometry.116

The calculations can be performed by employing macroscopic quantities (e.g. permeability), and the microscopic structure117

reproducing a certain macroscopic flow can be retrieved a posteriori through an inverse procedure [9, 24].118

In the introduced general framework, the investigation of the role of permeability in modifying the unsteady two-dimensional119

wake and the emergence of three-dimensional patterns is a crucial step forward in the understanding of large Reynolds number120

behavior of flows past permeable bluff bodies and the consequent three-dimensional fluid-structure interaction. The paper is121

organized as follows. Section II presents the mathematical formulation and numerical approach for the flow past and through a122

permeable circular cylinder. Section III is devoted to the study of the two-dimensional flow structure. We first identify the yet123

unknown linear stability boundary of the steady wake, and we then investigate the vortex shedding as permeability and Reynolds124

number of the flow are varied. Section IV studies, through a DMD-based algorithm, the three-dimensional stability of the two-125

dimensional vortex street, identifying the unstable modes and the boundary within which the two-dimensional solution is stable126

with respect to 3D perturbations.127

II. PROBLEM FORMULATION AND NUMERICAL APPROACH128

In this section, we introduce the equations governing the problem as well as their numerical implementation. A permeable129

circular cylinder of diameter D is invested by a uniform free-stream of an incompressible Newtonian fluid with velocity U∞ and130

kinematic viscosity ν , as shown in figure 1. The flow equations are solved in a Cartesian reference frame (x̄, ȳ, z̄), with the origin131

on the cylinder axis, which is parallel to the z direction as show in figure 1. We denote with (ū, p̄) and (ūi, p̄i) the velocity and132

pressure field outside and inside of the cylinder, respectively. The flow equations are non-dimensionalized with the free-stream133

velocity and with the cylinder diameter. Dropping bars for non-dimensional variables, the Navier Stokes equations in the fluid134

region Ω f outside the cylinder read:135

∇ ·u = 0,
∂u
∂ t

+u ·∇u+∇p− 1
Re

∇
2u = 0, (1)

where Re = (UD)/ν is the Reynolds number. The flow in the porous cylinder Ωp is governed by the Darcy Law [54]136

ui =−ReDa∇pi, ∇ ·ui = 0 (2)

coupled with the following slip condition at the interface Γint [61–64]:137

u|Γint −
(
−ReDaint∇pi|Γint

)
=ΛΛΛ

(
Σ(u, p)|Γintn

)
, pi|Γint =−n ·

(
Σ(u, p)|Γintn

)
, (3)

where Λ is the slip tensor (to be defined later), Σ(u, p) = −pI+ 1
Re

(
∇u+∇uT

)
is the non-dimensional stress tensor of the138

external flow, Da = κκκ
D2 and Daint =

κκκ int
D2 are respectively the Darcy tensor evaluated in the bulk and at the interface, i.e. the139
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non-dimensional versions of the bulk and interface permeability tensors κκκ and κκκ int. The macroscopic flow problem is closed by140

the far-field boundary conditions in the fluid domain, i.e. a uniform free stream condition u = ex at the inlet Γin and a zero-stress141

condition Σ(u, p)n = 0 on the lateral and downstream boundary Γout.142

The interface condition relies on a discontinuity of the velocity field related to the slip tensor ΛΛΛ = Λ̄ΛΛ

D . When represented143

in cylindrical coordinates, the tensor is diagonal, with non-zero components denoted with Λt and Λs, where t and s are the144

tangential vectors to the cylindrical interface. The slip tensor thus reads145

ΛΛΛ = Λt t⊗ t+Λss⊗ s, (4)

where (a⊗b)i j = aib j [57]. Depending on the considered values of permeability and slip, different microscopic configurations146

can be described. The imposition of zero permeability and a non-zero slip represents the case of a rough wall, which is described147

through a classical Navier slip condition [57–59]. A slip velocity, in the generic case, models the viscous effects in the vicinity148

of the interface, where the flow passes from the free-stream value to the one imposed by the Darcy law. The imposition of zero149

slip thus neglects viscous terms in the vicinity of the interface and gives the continuity of fluid stresses.150

In analogy with Ciuti et al. [24], the numerical implementation of the Darcy law is based on a second-order PDE for pi:151

∇ ·ui =−Re∇ · (Da∇pi) = 0 ⇒ ∇ ·∇(Dapi) = 0. (5)

The free-fluid and porous problems are coupled via a domain decomposition method [65]. We exploit the finite element software152

COMSOL Multiphysics for the numerical implementation. The numerical method relies on the weak form of equations (1,2),153

together with their boundary conditions, where P2−P1 Taylor-Hood elements for the fluid domain are employed, whereas the154

inner pressure pi is discretized through P1 elements. The numerical tolerance is set to 10−6, for all problems considered in this155

work. The steady problem and the stability analysis are solved via the built-in Newton algorithm and eigenvalue solver, the latter156

based on the ARPACK library. We employ a second-order Backward Differentiation Formula solver for the numerical solution157

of time-dependent problems. The results of the convergence analysis in terms of domain size and discretization, for the various158

problems considered here, are reported in Appendix A.159

While representing the macroscopic effect of an actual microscopic structure, the permeability, interfacial permeability and160

slip are treated as free parameters. This approach ensures that the presented results are independent of the considered microscopic161

geometry. The aim of this work is to give a general picture of the flow past an isotropic and homogenous permeable circular162

cylinder, i.e. we consider Da = DaI. Since the bulk and interface permeability typically scale in the same way, i.e. Da ∼ Daint163

[24], here we assume Daint = Da = DaI. Following Beavers and Joseph [66], the permeability and slip properties are not164

independent since they stem from the same microscopic geometry. In the following, we impose the classical scaling which165

relates permeability and slip, i.e. Λt ∼ Λs ∼
√

Da. In the following, we thus assume Λt = Λs =
√

Da.166

III. TWO-DIMENSIONAL FLOW167

In this section, we characterize the two-dimensional flow past a permeable circular cylinder for Re < 200. We first study the168

steady solution of the problem and we identify the boundaries in which this solution is linearly stable through linear stability169

analysis. We then study the time-dependent solution emerging beyond these boundaries. The numerical results presented in this170

section are obtained using the mesh M4, details of which are given in Table I.171

A. Steady flow172

In this section, we consider the steady two-dimensional solution of the flow equations and its stability with respect to two-173

dimensional, time-dependent, perturbations. The steady solution of the equations (U,P,Ui,Pi), with U = (Ux,Uy) and Ui =174

(Uix,Uiy) is given by175

∇ ·U = 0, U ·∇U+∇P− 1
Re

∇
2U = 0, ∇

2Pi = 0, (6)

together with the boundary conditions at the cylinder interface176

U|Γint −
(
−ReDa∇Pi|Γint

)
=
√

DaΣ(U,P)|Γintn, Pi =−n ·
(
Σ(U,P)|Γintn

)
. (7)

The problem is completed with the inlet free-stream U = ex and free-stress Σ(U,P)n = 0 conditions at the outlet [67] and lateral177

boundaries. The latter condition is equivalent to a free-slip as long as the free-stream flow at the sides of the domain are not178

influenced by the presence of the body, i.e. the blockage is negligible (see Appendix A).179
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FIG. 2. Steady flow streamlines and iso-contours of the streamwise component of the velocity field for Re = 45 and (a) Da = 10−4, (b)
Da = 5×10−3, (c) Da = 7×10−3, (d) Da = 9×10−3. Note that only the region y > 0 is reported, because of symmetry. (e, f ,g) Isocontours
(e) of the length of the recirculation region LR, (f) of the distance between the recirculation region and the cylinder XR and (g) of the drag
coefficient. The red and black dashed lines denote the zero iso-contours of LR and XR, respectively.

Figure 2(a-d) shows the steady flow streamlines past an increasingly permeable circular cylinder, for fixed Re = 45. While at180

low permeability Da = 10−4 the flow features are analogous to the solid case, at Da = 5×10−3 a slightly smaller recirculation181

region, detached from the body, is observed. As permeability further increases, the recirculation region moves away from the182

cylinder, becomes smaller and disappears. Even in the absence of a recirculation region (subfigure (d)), there is a region of very183

low velocity downstream of the cylinder. The behavior of the recirculation region is summarized in figure 2(e-f), which shows184

the iso-contours of its length LR (i.e. the streamwise distance between the two points on the axis y = 0 on which the streamwise185

velocity is identically zero) and its distance from the rear of the cylinder XR (i.e. the distance x from the rear of the cylinder186

at which the streamwise velocity becomes negative). At low Reynolds numbers, an increase in Da leads to a decrease of LR.187

However, for large enough Re, the length of the recirculation region shows an initial increase with Da followed by a decrease,188

until it disappears. For Da > 0.004, LR presents a non-monotonous behavior for increasing Re, with an initial increase followed189

by a rapid decrease, until disappearance of the recirculation region. The distance of the recirculation region increases with the190

permeability and reaches very large values, of the order of ≈ 4 diameters at large Reynolds numbers.191

In analogy with other permeable bodies studied in the literature [9, 13, 21, 24], the two-dimensional steady flow past a192

permeable cylinder presents a detached recirculation region. In general, the recirculation region shrinks and disappears as Da193

increases. The shrinking and detachment of the recirculation region stem from the intensity of vortical layers generated by the194

flow separation. An increase in permeability leads to larger velocities through the body and to a less perturbed flow, with respect195

to the free-stream condition. Therefore, the strength of vortical layers induced by flow separation is reduced, leading to a lower196

counterflow and smaller recirculation regions. This effect is combined with the presence of a positive bleeding flow through197

the cylinder which leads to a downstream displacement of the recirculation. The non-monotonous behavior of the length of the198

recirculation region with increasing Re is related to the competition between the increase of the flow inertia (which tends to199

increase LR), in analogy with what happens in the case of impervious bodies, and the decrease of the microscopic viscous drag200

u/(ReDa) 1/Re exerted by the porous structure (which tends to decrease LR), since the velocity through the pores increases with201

Re (see equation (2)) [9].202

The modifications of the flow morphology also affect the behavior of the drag coefficient CD = 2
∫

Γint
Σ(U,P)n · exdΓ The203

drag coefficient monotonically decreases at low Reynolds numbers. However, for Re > 100, a clear peak in the iso-contours is204

visible, thus highlighting a non-monotonous behavior with permeability. This behavior is analogous to the one of LR, since both205

are related to the intensity of vorticity in the field, which in turn relates to the microscopic drag at the pore scale.206

These analyses have been performed by considering the steady solution of the flow equations. However, not all described207

flow configurations are likely to be observed, since the steady wake may be unstable to perturbations. In the solid case, the wake208
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FIG. 3. (a) Neutral curve in the (Da,Re) plane, together with the values of St following the marginal stability (colored dots). In the inset:
zoom in the region 0.0035 < Da < 0.008 (black solid line), together with the iso-contours of the length of the recirculation region LR. (b,c)
Streamwise component of the velocity eigenmode at the marginal stability, for Da = 5.032×10−3 and (b) Re = 85, (c) Re = 130.

past a circular cylinder undergoes a Hopf bifurcation at Re ≈ 46.7, leading to the well-known von Karman vortex street, i.e. an209

alternate shedding of vortices with a well-defined frequency [26]. Linear stability analysis can be used to identify the critical210

conditions which lead to the instability of the steady flow and the onset of an unsteady wake. Linear stability techniques rely on211

the introduction of the following decomposition in the flow equations (1) and (2), with ε ≪ 1:212

u(x,y, t) = U(x,y)+ εu′ (x,y, t) , p(x,y, t) = P(x,y)+ ε p′ (x,y, t) , pi (x,y, t) = Pi (x,y)+ ε p′i (x,y, t) . (8a)

While at O(1) one recovers the steady equations satisfied by (U,P,Pi), a time-dependent linear problem is obtained at order213

O(ε). Upon introduction of a normal mode ansatz, i.e.214

(
u′(x,y, t), p′(x,y, t), p′i(x,y, t)

)
= (û(x,y), p̂(x,y), p̂i(x,y))exp(σt), (9)

the following eigenvalue problem is obtained:215

∇ · û = 0, σ û+U ·∇û+ û ·∇U+∇p̂− 1
Re

∇
2û = 0, ∇

2 p̂i = 0, (10)

together with the interface condition216

û|Γint −
(
−ReDa∇p̂i|Γint

)
=
√

Da
(
Σ(û, p̂)|Γintn

)
, p̂i|Γint =−n ·Σ(û, p̂)|Γintn, (11)

completed with the homogenous condition û = 0 at the inlet and the stress-free condition Σ(û, p̂)n = 0 on the lateral and outlet217

boundaries. The real and imaginary parts of the complex eigenvalue σ = Re(σ)+ iIm(σ) are the growth rate and oscillation218

frequency of the global mode. Modes with Re(σ) > 0 grow exponentially with time and are thus unstable. In this work,219

we identify the critical value of Re and Da for which Re(σ) = 0, together with the corresponding spatial distribution of the220

marginally stable mode. The grid convergence analysis of the eigenvalue problem is reported in Appendix A.221

Figure 3(a) shows the marginal stability curve for the onset of the vortex shedding, i.e. the couples (Re,Da) for which the222

flow presents null growth rate. The marginal stability curve divides the parameters’ space into a stable and unstable region.223

For Da = 10−4, the critical Reynolds number for the marginal stability is analogous to the solid case, i.e. Recr = 46.7. As224

permeability increases, Recr remains constant until Da = 10−3, beyond which it starts to increase. The marginal stability curve225

presents an inversion point for Da ≈ 6× 10−3. Close to this value, an increase of Re with constant Da leads to an initial226

destabilization, followed by a re-stabilization at larger Reynolds numbers. The non-dimensional frequency, expressed in terms227

of Strouhal number St = Im(σ)/(2π), does not show strong variations with Da and Re, when considered along the marginal228

stability curve, even if a slight increase with Da is observed. In the inset of figure 3, the marginal stability curve is overlaid with229

the iso-contours of the length of the recirculation region. The marginal stability curve follows the iso-contour LR ≈ 3 before the230

inversion point. After the inversion point, the marginal stability curve crosses decreasing isolevels of LR. For large enough Re,231

the neutral curve is located in a region where the recirculation region is absent.232

The highlighted behavior of the marginal stability curve is analogous to the one observed for different shapes[24] and per-233

meable models [9, 13, 21]. Since the neutral curves reasonably follow the iso-contours of the length of the recirculation region234

[21], the inversion point observed in figure 3 is due to the non-monotonous behavior of the recirculation region with Re, related235
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FIG. 4. Spanwise base-flow vorticity snapshots for (a) Re= 215, Da= 1×10−4, (b) Re= 200, Da= 2×10−3 and (c) Re= 215, Da= 3×10−3,
normalized with the corresponding maximum absolute value, i.e. (a) max(|ωz|) = 27.3 , (b) max(|ωz|) = 8.3, (c) max(|ωz|) = 6.1.

to the competition between the flow inertia and the decrease of the drag through the pores. The presence of an unstable region236

without recirculation was already highlighted in Ledda et al. [21]. Despite the absence of a recirculation region, there is a strong237

wake defect past the cylinder (as shown in figure 2(d)) which is enough to trigger the oscillatory instability [68, 69].238

The properties of the recirculation region also influence the spatial structure of the critical modes, shown in figure 3(b). We239

consider two cases for fixed Da ≈ 5× 10−3 and increasing Re. The case Re = 85 shows a spatial distribution very similar to240

the solid case, with a slight downstream displacement of the onset region of the vortex shedding. However, for Re = 130, the241

onset region moves further downstream. While the length of the recirculation region LR modifies the stability properties of the242

wake, its distance from the cylinder XR has a deep influence on the vortex-shedding onset region. The onset region is typically243

related to the position of the instability, so-called wavemaker [69], that, with a good approximation, corresponds to where the244

recirculation region or the wake defect is located [21, 69]. Therefore, the downstream displacement of the wake defect of the245

steady flow moves downstream the vortex shedding onset location. This downstream displacement may have a profound impact246

on the non-linear unsteady flow and in particular on the forces acting on the cylinder, analyzed in the next section.247

B. Two-dimensional von Karman vortex street248

In the previous section, we characterized the steady flow and identified the boundaries in the (Da,Re) plane where this249

solution can be observed. In this section, we cross this threshold in the parameters’ space and consider the unsteady, non-linear250

solution of the flow equations introduced in Section II. The numerical results presented in this section are obtained adopting a251

mesh derived from mesh M4 (see Table I) with a reduced outflow length Lout = 90 according to results given in Table II. For252

further details in terms of numerical convergence, we refer to Appendix A. The field is initialized with the initial condition253

u = (1,0); the first 100 time units are discarded to let transient effects fade away and results are presented after a periodic254

state (observed through the monitoring of aerodynamic forces) in the near wake is attained. Figure 4 presents typical vorticity255

patterns observed by progressively increasing the cylinder permeability. For Da = 10−4, the flow features are analogous to the256

solid case, with vortices that are shed from the cylinder. However, for Da = 2×10−3, two shear layers of opposite vorticity are257

observed just downstream of the body. At x ≈ 2, the shear layers become unstable and vortices are shed in the wake, with larger258

spacing between the vortical structures of opposite signs, compared to the previous case. A further increase in Da moves further259

downstream the onset region, and the distance between vortical structures increases. In addition, the wavelength (and the period260

as seen below) of the shedding increases with increasing Da.261

The downstream displacement of the onset region induces a variation of the periodic aerodynamic forces exerted on the262

cylinder. Figure 5(a) shows the variation with time of the drag coefficient, rescaled with its mean value in the plotted time range,263

and of the lift coefficient CL, for increasing values of Da and fixed Re = 200. In all cases, a well-defined oscillation frequency264
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(a) (b) St

FIG. 5. (a) Drag coefficient rescaled with its mean value (on the top) and lift coefficient (on the bottom) as functions of time, for Re = 200 and
Da = 10−4 (blue), Da = 10−3 (orange), Da = 2×10−3 (yellow). (b) Scatter plot in the (Re,Da) plane of the Strouhal number obtained from
the DNS (colored dots in the black circles). The black solid line denotes the marginal stability curve while the colored dots on it the values of
St obtained from the linear stability analysis. Crosses instead denote nonlinear simulations which converged to a steady solution.

is identified. In the almost-solid case, the oscillation frequency of the drag coefficient is twice the one of the lift coefficient, in265

agreement with the solid case [2]. For both quantities, the frequency slightly decreases as permeability increases. An increase266

of permeability also leads to a decrease of the amplitude of the oscillations of the drag coefficient with respect to its mean value.267

At the same time, the lift oscillations amplitude decreases. For Da ≈ 2× 10−3, the CD oscillations are almost damped, while268

those of CL are reduced by two orders of magnitude.269

The presence of a well-defined frequency in the time history of the aerodynamic forces allows us to use them in evaluating the270

Strouhal number of the wake. In particular, we employ the lift coefficient, to this purpose. Figure 5(b) shows the values of St in271

the (Da,Re) plane, together with the values obtained from the linear stability analysis, which lie on the marginal stability curve.272

The crosses identify cases in which the non-linear time-dependent simulations lead to a steady flow. These results agree with273

the linear stability analysis of the previous section. Overall, St increases as Da and Re progressively depart from the marginal274

stability curve. At low permeability, an increase in the Reynolds number leads to a monotonic increase of St, from ≈ 0.1 to275

≈ 0.22. For fixed Re, instead, the Strouhal number decreases with permeability. For Da = 4×10−3, a non-monotonous behavior276

of St with Re is observed, starting from the initial marginal stability at Re ≈ 60 to the recovered neutral curve at Re ≈ 250, in277

analogy with the behavior of recirculation region and drag coefficient.278

The non-linear unsteady simulations show that the von Karman vortex street forms in a region which progressively moves279

downstream as permeability increases. This result, experimentally observed by [19] at larger Reynolds numbers, is in agreement280

with the spatial distribution of the linear stability modes and is related to the downstream displacement of the recirculation region.281

Since the onset of shedding can take place significantly downstream of the cylinder, the intensity of the flow oscillations in the282

vicinity of the cylinder decrease. As a consequence, the drag and lift oscillation amplitudes decrease, until an almost constant283

value of drag and a vanishing lift are reached, although vortex shedding is still present (see figure 5). The decrease of Strouhal284

number for increasing Da is indirectly visible in figure 4. The vortices present a larger spacing as permeability increases, for285

fixed Re. Therefore, the vortices are shed with a lower frequency since the advection velocity of these vortices, related to the free-286

stream velocity, is the same in all cases. An increase in permeability reduces the intensity of the separation since more fluid can287

pass through the body, reducing the adverse pressure gradients. Amplification of perturbations is thus reduced and the unstable288

region moves downstream, as shown by [21] with local stability analysis for a permeable rectangle. Therefore, perturbations289

grow to significant amplitude only further downstream from the cylinder, with a consequent frequency reduction. This analysis290

is confirmed by observing figure 4, in which the maximum value of vorticity decreases and shear layers destabilize further291

downstream as permeability increases. Permeability reduces the intensity of produced vorticity, with a consequent downstream292

displacement of vortex shedding onset region and a decrease of the shedding frequency, since perturbations need to be advected293

more downstream to be sufficiently amplified. These flow modifications damp and eventually suppress the oscillations of the294

aerodynamic forces acting on the cylinder.295

Figure 6 shows the mean flow streamlines, obtained by averaging the time-dependent periodic flow over one period. In296

analogy with the steady case, the mean flow presents a recirculation region that detaches from the body and moves downstream297

as permeability increases. The behavior of the recirculation region of the mean flow in terms of length LR and distance XR is298
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summarized in figure 7(a,b). Its presents a non-monotonous behavior with Da, for fixed Re, with an initial increase followed by299

a very steep decrease until disappearance of the recirculation. The maximum values reached are of the order of LR ≈ 1−2. The300

distance instead always increases with Da, reaching a maximum value of ≈ 2.5, for the considered cases. These results are in301

line with the experiments of Castro [14], where a detached mean recirculation region past a perforated plate was observed, at302

Reynolds numbers of the order of 104. The presence of a detached recirculation region of the mean flow is thus a footprint of303

the permeability of the bluff body penetrated by the flow, in addition to the behavior observed in the steady case.304

The mean values of the drag coefficient and the maximum lift coefficient are reported in figure 7(c,d). The maximum lift305

coefficient monotonically decreases with Da, reaching very small values (≈ 0.01) for Da > 3× 10−3. The values of lift are306

intrinsically related to the oscillations in the near wake. Since, as Da increases, the onset region of the vortex shedding is moved307

downstream, oscillations of the lift coefficient decrease until they become negligible. Similarly, for large enough permeability,308

no significant drag oscillations are observed. Interestingly, the mean drag coefficient presents a maximum for intermediate309

permeability, in the vicinity of Da ≈ 10−3, beyond which it decreases monotonically. This maximum of drag is realized for310

slightly lower values of permeability, when compared to the steady baseflow.311

We conclude our analysis of the two-dimensional vortex shedding by showing the far-wake behavior of the von Karman312

vortex street. Figure 8(a) shows the far wake distribution of the vorticity field, for Da = 9× 10−4 and Re = 195. In analogy313

with the solid case [70], the vortex street past the cylinder decays and two shear layers of opposite vorticity emerge. The shear314

layers are known to be convectively unstable and amplify a broad band of frequencies [70]. However, an increase in Da (figure315

8(b,c)) leads to a downstream displacement of the vortex shedding decay region, and vortices are observed for a much larger316

downstream extent. The long distance behavior is related to the streamwise spacing of the vortices. In panel (a), vortices are less317

spaced than in panel (c). As the spacing increases, vortices of opposite sign present a weaker interaction, and these structures318

thus annihilate at larger distances from the cylinder. Since the shedding frequency decreases with increasing permeability, also319

the spacing of vortices increases with permeability, which survive longer downstream. Therefore, when compared to impervious320

obstacles, permeable bodies present a spatially-retarded emergence of the far-field shear layers associated to a longer region of321

influence of the shedding extending further downstream. This observation is in agreement with the results of [21], where the322

authors showed that the core of the instability (i.e. the wavemaker [69], see Section III A) extends several diameters downstream323

of the body.324

Another interesting flow feature appears in the far wake, at large times: the shear layers resulting from the annihilation of the325

vortex street destabilize and vortical structures are advected downstream, which constitute the so-called secondary vortex street.326

Mittal et al. [70] also observed, in the impervious case for a circular cylinder, that the vortical structures in the far wake region327

lack of the periodicity typical of the near wake region and that the size of these structures grow as they are advected downstream.328

A work carried out by Vorobieff et al. [71] confirmed such a flow pattern trough a PIV analysis of experimental data. Figure 9329

shows the frequency spectra of the cross-stream component of the velocity for the flow case corresponding to Da = 1× 10−4
330

and Re = 188.5 and Da = 9×10−4 and Re = 240 sampled at various streamwise locations. As described in [70], the near-wake331

dominant frequency corresponds to the von Kármán shedding frequency (StV K) and the flow locally is exactly periodic. Moving332

FIG. 6. Mean flow streamlines and iso-contours of the mean streamwise velocity for Re = 200 and (a) Da = 10−4, (b) Da = 10−3, (c)
Da = 2×10−3.
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FIG. 7. (a) Length of the recirculation region of the mean flow L̄R (on the top) and its distance from the cylinder X̄R (on the bottom) in the
(Da,Re) plane. (b) Mean drag C̄D (on the top) and maximum lift Cmax

L (on the bottom) coefficients in the (Da,Re) plane. The black line
denotes the marginal stability curve.
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FIG. 8. Vorticity field (rescaled with the maximum absolute value) iso-contours at large times for (a) Da = 9×10−4, (b) Da = 2×10−3 and
(c) Da = 3×10−3 for Re = 200 at a non-dimensional time t = 180.

downstream, the velocity spectra exhibit a gradual shift to broad-band frequencies centered around a frequency lower than fV K333

for a wide range of parameters in the Re−Da plane. Figure 10 shows the behavior of the far wake for the case Re = 240 and334

Da = 9×10−4. Although the near-wake is essentially periodic, the overall flow looses periodicity due to the far-wake convective335

disturbance growth.336

IV. DMD-BASED ANALYSIS OF THE TRANSVERSE SECONDARY INSTABILITY OF THE VON KARMAN VORTEX337

STREET338

In the previous section, we investigated the structure of the two-dimensional flow past a permeable cylinder. However, actual339

flow configurations are intrinsically three-dimensional. In particular, the presence of modulations of the vortex shedding along340

the z (denoted as spanwise) direction is a crucial issue to characterize the behavior of cylindrical structures. In this perspective,341

we aim at understanding the conditions which lead to a destabilization of the two-dimensional von Karman vortex street along342

the spanwise direction through a secondary stability analysis of this periodic flow. The analysis of the emergence of three-343

dimensional instabilities of the two-dimensional von Kármán vortex street (secondary instability) typically relies on the Floquet344

analysis (see [33], [72]), whose formalism assumes a perfectly periodic vortex shedding in the whole domain, which is not345

the case in the present configuration. As a consequence, classical Floquet theory for the study of the secondary instability346

cannot be rigorously applied, unless one artificially filters out this far wake dynamics. This aspect does not affect the analysis347
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FIG. 9. Flow past a permeable circular cylinder: frequency spectra of the cross-stream component of velocity at different sample points in the
streamwise locations and y = 0 for (a) Da = 1×10−4, Re = 188.5 and (b) Da = 9×10−4, Re = 240.

of the impervious case, but it may be important for the permeable case as the vortex street can originate significantly further348

downstream of the cylinder. A way to overcome this issue consists in applying an Arnoldi-like algorithm procedure only on a349

sub-domain of the field solution, specifically where the base-flow preserves the T -periodicity. As an alternative stability tool350

to study the emergence of these three-dimensional secondary modes, which reduces to the classical Floquet analysis when the351

flow is perfectly periodic but can handle cases with imperfect periodicity of the base flow, we propose here a procedure based352

on Dynamic Mode Decomposition (DMD), which also allows one to easily analyze smaller portions of the actual domain, so as353

to separate diverse dynamical behaviors occurring at different spatial locations, e.g. in the near and far wake.354

It is well assessed in the literature [33] that the two-dimensional von Karman vortex street past a solid circular cylinder355

becomes unstable to transverse perturbations at Re = 188.5, leading to modulations of the vortex street past the cylinder. While356

the solid case has been widely investigated, similar studies in the permeable case are still lacking. In this section, we investigate357

the modifications induced by permeability on this transverse, secondary, instability. Following Barkley et al. [33], the three-358

dimensional instability is first induced by a long-wavelength mode A, which becomes unstable at Re = 188.5. A second family359

of modes (B), is characterized by shorter wavelengths and become unstable for Re > 250. Since we study the case Re < 250, we360

focus on the family of modes A, responsible for the first three-dimensional instability, in the impervious limit.361

A. Linearized 3D equations362

By introducing a O(ε) three-dimensional perturbation (u′ (x,y,z, t) , p′ (x,y,z, t) , p′i (x,y,z, t)), equations (1)-(3) are lin-363

earized around the time-dependent two-dimensional flow described in Section III B, i.e.364

u(x,y,z, t) = U(x,y, t)+ εu′(x,y,z, t), p(x,y,z, t) = P(x,y, t)+ ε p′(x,y,z, t), pi(x,y,z, t) = Pi(x,y, t)+ ε p′i(x,y,z, t), (12)

Substitution into (1)-(3) leads to the following O(ε) linearized equations365

∇ ·u′ = 0,
∂u′

∂ t
+u′ ·∇U+U ·∇u′−∇p′− 1

Re
∇

2u′ = 0, ∇
2 p′i = 0, (13)

with homogeneous Dirichlet condition at the inlet and free-stress condition at the outlet and on the lateral boundaries. At the366
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FIG. 10. Snapshots of the vorticity field iso-contours for Da = 9×10−4 and Re = 240.

interface Γint, the conditions below govern the dynamics of the three dimensional perturbation367

u′|Γint =−ReDa∇p′i|Γint +
√

DaRe
(
Σ
(
u′, p′

)
|Γintn

)
, p′i|Γint =−

(
Σ
(
u′, p′

)
|Γint n

)
·n, (14)

The small perturbation is given by the following real-valued ansatz:368

u′ = (ũ(x,y, t)cos(β z), ṽ(x,y, t)cos(β z), w̃(x,y, t)sin(β z)) , (15a)
369

p′ = p̃(x,y, t)cos(β z), p′i = p̃i (x,y, t)cos(β z). (15b)

Hence, for any combination (Re,Da), the three-dimensional linearized dynamics reduces to a one-parameter (the spanwise370

wavenumber β ) family of two-dimensional problems.371

Upon spatial discretization (see Section II for details), the linear system is conveniently rewritten as a dynamical system of372

ODEs:373

dq̃
dt

= A (t) q̃, (16)

where q̃ = {ũ, p̃, p̃i}T , subjected to the initial condition q̃(t = 0) =q̃ic which satisfies the boundary conditions. The temporal374

dependence of the unsteady two-dimensional base-flow is embedded in the linear operator A . Note that if such operator is375

T -periodic, i.e. A (t) = A (t +T ), Floquet theory ensures an ansatz as [33]376

q̃(x,y, t) = q̂F (x,y, t)exp(σF t), (17)

with q̂F (x,y, t) = ∑
k=+∞

k=−∞
φF,k (x,y)eikωt the Floquet mode associated with the potentially complex Floquet multiplier µF =377

exp(σF T ) = exp(σF(2π/ω)), and where the real part of the Floquet exponent, Re(σF ), is related to the growth/decay rate of the378

perturbation. We also recall that a value of Im(σF )= 0 would mean that the unstable perturbation is synchronous with respect to379

the T -periodic base-flow [33].380

B. SP-DMD algorithm for secondary stability analysis381

The stability properties of the linear problem (16) are investigated through a Sparsity-Promoting Dynamic Mode Decompo-382

sition (SP-DMD) algorithm [42–44], whose essential points are introduced below. Dynamic Mode Decomposition relies on the383

formulation of the data-sequence as a Krylov sequence of snapshots q̂m384

Qm = {q̂0, q̂2, ..., q̂m} ∈ Rn×m, (18)
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are scaled with the oscillation frequency of the near wake base flow, ω = 2π/T .

where n denotes the number of degrees of freedom and m is the number of equally spaced time-snapshots (separated by a385

constant time-step ∆t). The data-sequence is assumed here to be real-valued, i.e. ∈ Rn×m. Here snapshots q̂m are obtained386

by time-integrating (16) for a fixed set of parameters, i.e. (Re,Da,β ), starting from an initial condition
{

ûic, p̂ic, p̂i
ic}. The387

maximum time-step for time integration is 0.01. The time evolution of the perturbation field {û, p̂, p̂i} is then temporally388

sampled with constant frequency with the constraint that f > 2/T according to the Nyquist theorem, so as to obtain equally389

spaced temporal snapshot separated by a time-step ∆t = 1/ f . In our specific case the value f = 10 is employed, corresponding390

to about 50 snapshots per shedding cycle. Moreover, as we are mainly interested in characterizing the stability properties of the391

near wake two-dimensional time-periodic flow dynamics, we can take advantage of the DMD technique to limit the analysis392

only to a sub-portion of the actual domain, specifically, where the base flow is T -periodic. The sensitivity analysis to the size393

of such a sub-domain reported in Appendix A shows that a spatial frame of extension x ∈ (−1,15) and y ∈ (−4,4) is a suitable394

choice for the computation of the relevant DMD eigenvalues. For the sake of convenience, within this spatial window, the395

flow fields corresponding to each temporal snapshot were interpolated from the original finite element grid onto a uniform grid396

with ∆x = ∆y = 0.8. For specific cases, we employed a domain of streamwise extent up to x = 60, so as to better visualize the397

downstream structure of the perturbation. Note that this does not affect the convergence of the results, as shown in Appendix A.398

Without lack of generality, we chose as initial condition for the linearized simulations the time derivative of the base flow399

∂U/∂ t, which naturally satisfies the boundary conditions and which essentially corresponds to a marginally stable Floquet mode400

for a spanwise wavenumber β = 0 [33]. This choice helps in reducing the initial transient, which is then discarded.401

402

We first introduce the two sub-snapshot matrices, Qm
1 = (q̂0, q̂1, ..., q̂m−1) and Qm

2 = (q̂1, q̂2, ..., q̂m)∈ Rn×m−1. A pre-processing403

step is performed, which employs the economic-size SVD decomposition of the data sequence Qm
1 , i.e. Qm

1 = UΣW H (the404

superscript "H" notes the conjugate transpose). The companion matrix S̃ = UHQm
2 WΣ−1 is then computed, whose eigenvalues405

and eigenvectors are solution of the following standard eigenvalue problem406

S̃y j = µ jy j, φ j (x,y) =Uy j, σ j = log µ j/∆t, (19a)

and represent the DMD eigenvalues and modes respectively. Quantities Re(σ j) and Im(σ j) have the meaning of a growth/decay407

rate and oscillation frequency, respectively, associated with the jth DMD mode. As an example, the DMD spectrum computed408

for the parameter setting (Re,Da,β )=
(
200,9×10−4,1.5

)
is reported as black circles in figure 11. The data-sequence can be409

then represented as410

Qm
1 ≈

r=m

∑
j=1

α jφ jµτ
j = φDαVand , (20)

with τ ∈ (0,1, ...,m−1), φ = (φ1,φ2, ...,φr) (spatial structures), Dα = diag(α) (amplitudes) and Vand ∈ Cr×m the Vandermonde411

matrix (temporal dynamics) [44].412

At this stage, the vector of amplitudes, α = (α1,α2, ...,αr), is still unknown. In general, their determination requires solving413

the following optimization problem,414

min
α

J (α) := ||Qm
1 −φDαVand ||2F = ||ΣW H −Y DαVand ||2F , (21)

where the subscript "F" denotes the Frobenius norm and J (α) is the objective function.415

In the present framework where DMD is used as a stability analysis tool to determine the eigenvalues and eigenmodes of the416
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system, we are not interested in reconstructing the original time process produced via linearized simulations, thus the determi-417

nation of these amplitudes is not strictly relevant. However, it is known that the DMD algorithm presented above, requiring a418

matrix or pseudo-matrix inversion, often experiences numerical difficulties, due to the presence of several spurious modes [48].419

In many cases, such modes can be successfully removed through an optimization process, i.e. Sparsity-Promoting (SP) algo-420

rithm [44], which identifies the modes that have the most profound influence on the quality of the approximation of the original421

snapshot-sequence. In practice, this is done by introducing a user-defined trade-off between the number of extracted modes and422

the approximation error with respect to the original data sequence, i.e. sparsity is induced by augmenting the objective function423

with an additional term that penalizes the l1-norm of the vector of unknown amplitudes α . Hence, the amplitude calculation is424

still useful in this context so to filter out spurious modes and to highlight the dominant modes in the eigenvalue spectrum of fig-425

ure 11. The problem of computing these amplitudes takes the form of a constrained convex optimization problem (solvable via426

Alternating direction method of multipliers (ADMM) [44]). Further details are given in [44]. The Matlab function implementing427

the Sparsity Promoting algorithm, used in the present work, can be found in [73].428

The optimized SP-DMD eigenvalues are reported in figure 11 as red crosses. We recall that the DMD analysis is performed429

in a sub-domain where the unsteady two-dimensional base flow is T -periodic so to filter our the secondary dynamics in the far430

wake base flow. Then, for the parameter configuration of figure 11, the SP algorithm identifies as dominant a series of aligned431

modes sharing the same growth rate Re(σ j)= σDMD, e.g. zero in this case (marginally stable at β = 1.5), and corresponding to432

consecutive harmonics, i.e. Im(σ j)= lω , l = . . . ,−2,−1,0,1,2, . . ., with the first harmonic for l = ±1, synchronized with the433

oscillation frequency of the T -periodic base flow.434

Thus, given the properties of the SP-DMD spectrum of figure 11, from equation (20) one can readily construct a basis of435

DMD modes in the following form436

exp(σDMD(τ∆t))
l=+Nh

∑
l=−Nh

φl (x,y)eilω(τ∆t), (22)

where Nh denotes the number of harmonics considered in the computation whereas the index l is here used to refer to the SP-437

DMD mode corresponding to each of those harmonics. Note that the amplitudes have been omitted for the sake of clarity. As438

already outlined in [48], the close connection with Floquet modes appears straightforward once recalling the standard Floquet439

ansatz440

exp(σF t)
k=+∞

∑
k=−∞

φF,k (x,y)eikωt , (23)

with Im(σF )= 0 for a synchronous instability. Essentially, the set of DMD modes identified by the SP algorithm gives an441

approximation of the dominant Floquet mode. Note that it is only an approximation because of the truncated series in (22).442

Furthermore, for τ∆t = T , exp(σDMD (τ∆t)) = exp(σDMDT ) precisely corresponds to the Floquet multiplier µF = exp(σF T ),443

which we will denote hereinafter simply as µ ∈ R and that will be used as criterion for the determination of the instability onset,444

e.g. µ < 1 stable, µ = 1 marginally stable and µ > 1 unstable, keeping in mind that this calculation is not performed via standard445

Floquet analysis, but rather through a SP-DMD algorithm that post-processes linearized simulations.446

In summary, the DMD computation provides several harmonics, all associated with the same multiplier, which composed447

together provide the Floquet eigenmode.448

In Appendix A we validate the outcomes of our DMD-base procedure with those of Barkley & Henderson [33], for the case449

of a solid cylinder, from a standard Floquet analysis. To this end we replicated their exact domain size and we employed a450

comparable mesh. In Table III is reported the variation of the multiplier µ with respect to the spatial window employed for451

the assembling of the snapshot matrix Qm. The grid coincides with the one employed for the two-dimensional time-dependent452

nonlinear simulations.453

C. Results454

Figure 12 shows the spatial distributions of the late-time z-vorticity, obtained from the linearized model, for Da = 9× 10−4
455

and for increasing Reynolds numbers, while figure 13 shows the associated time-evolution of the y-component of velocity456

of the three-dimensional perturbation sampled at x = 2.5. In case (a), we report a snapshot for a case in which the three-457

dimensional perturbation is decaying with time. We observe the presence of two regions. In the vicinity of the body, the vorticity458

distribution is similar to that of mode A for impervious cylinders [33]. Conversely, far downstream, vorticity cores stretch along459

the streamwise direction and get closer to the axis y = 0. In panels (b,c), we instead report two unstable cases. The pattern of460

streamwise vorticity in the near-wake is similar to that of mode A past impervious cylinders [33]. In case (b), the amplitude of461

vorticity is spatially decaying while moving downstream, in opposition to case (c), where the amplitude of vortical structures462

increases with x.463
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FIG. 12. Spanwise (z) component of vorticity (rescaled with its maximum absolute value) from the linearized simulations at t = 100 and
Da = 9×10−4": (a) Re = 195, β = 1.56, (b) Re = 230, β = 1.5 and (c) Re = 250, β = 1.5.
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FIG. 13. Da = 9×10−4. Transversal velocity ṽ sampled at (x = 2.5, y = 0) as a function of time. The red dashed line denotes the exponential
growth or decay obtained from DMD. (a) Re = 195 and β = 1.56, (b) Re = 230 and β = 1.5, (c) Re = 250 and β = 1.5.

The downstream displacement in the onset of the three-dimensional perturbation is related to the downstream shift in the464

formation of the two-dimensional vortex shedding, induced by the permeability of the cylinder. The evolution of the 3D pertur-465

bation is reminiscent of the three regions observed in figure 8. Initially, the perturbation vorticity follows the vortex shedding466

pattern. For 10 < x < 20, the transitional behavior is observed both for the base flow and perturbation. At large distances,467

the baseflow presents two shear layers of opposite vorticity. The perturbation is instead characterized by patches of opposite468

vorticity on each half-plane that progressively stretch.469

As seen in figure 13, case (a) is characterized by a decreasing amplitude of the oscillations with time, while cases (b,c) are470

unstable and the perturbation grows. The temporal evolution is a T -periodic function modulated by a decaying or growing471

exponential. Upon employment of the DMD-based procedure on the linearized simulations, one obtains the Floquet multiplier472

µ and the associated eigenvectors, for each value of β , Re and Da considered. The Floquet multiplier allows for the temporal473

reconstruction of the envelope of the perturbation, reported with the dashed line in figure 13, which shows that the exponential474

growth predicted using the DMD technique is in excellent agreement with the envelope of the decaying or growing perturbation.475

The Floquet multipliers and modes depend on the spanwise wavenumber β . For varying β , one obtains the dispersion relation,476

which relates the behavior in space (z) and time of the growing or damped perturbation. Figure 14 presents diverse dispersion477

relations for different values of permeability and Reynolds number. All dispersion relations have a similar behavior, characterized478

by a maximum of µ in an intermediate range of β . We begin by considering subfigure (a), i.e. Da = 10−4. For this value of479

permeability, the dispersion relation is analogous to the one of an impervious cylinder. For Re = 180, the maximum value of µ480
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FIG. 14. Dispersion relations for different cases. (a) Da = 10−4 and increasing Reynolds number; Re = 180 (blue), Re = 185 (orange), Re =
200 (yellow), Re = 215 (purple), Re = 230 (green). (b) Da = 9×10−4 and increasing Reynolds number; Re = 195 (blue), Re = 200 (orange),
Re = 215 (yellow), Re = 230 (purple), Re = 250 (green). (c) Re = 180 and increasing Darcy number; Da = 10−4 (blue), Da = 2.5× 10−4

(orange), Da= 5×10−4 (yellow), Da= 7×10−4 (purple). (d) Re= 195 and increasing Darcy number; Da= 2.5×10−4 (blue), Da= 7×10−4

(orange), Da = 9×10−4 (yellow).Note that the solid lines are obtained via spline-interpolation and only serve to guide the eye.

is less than unity. A slight increase in the Reynolds number (Re = 185) increases the value of the Floquet multiplier, and there is481

a small range of β for which µ > 1. We identify the presence of two cut-off wavenumbers which identify the crossing µ = 1. A482

further increase in Re leads to a progressive enlargement of the region with µ > 1, and at the same time the maximum value of483

the Floquet multiplier increases. An increase in permeability (subfigure (b)) leads to similar trends, although the maximum value484

of µ decreases. Subfigure (c) instead shows the dispersion relations for fixed Reynolds number Re = 180 and increasing values485

of permeability. As Da increases, the maximum value of µ increases. For Da = 2.5×10−4, a range with µ > 1 appears, which486

enlarges for Da = 5× 10−4 and eventually shrinks for Da = 7× 10−4, as the maximum value of µ decreases. For Re = 195487

(subfigure (d)), a stabilizing effect with increasing Da is observed.488

In summary, an increase in Reynolds number leads to an overall increase of µ . Conversely, an increase in Da instead leads489

to a non-monotonous behavior of µ , characterized by an initial increase for low permeabilities followed by a decrease at large490

permeabilities, as shown in figure 14(c). The dispersion relations show the typical behavior described by Barkley [33] for the491

impervious case, with a maximum µ and two cut-off wavenumbers for which µ = 1. Therefore, the two cut-offs define the492

unstable range of wavenumbers. Figure 15 summarizes the behavior of the maximum value of µ (obtained through the spline493

interpolation shown in figure 14) and the associated β in the (Da,Re) plane, for the studied cases in the range 175 < Re < 250,494

together with a linear interpolation to µ = 1 (red line) that indicates the location of the marginal stability conditions. As495

already observed, the unstable range of wavenumbers where µ > 1 initially slightly increases with the permeability. This is496

correlated to the slight decrease of the critical Reynolds number observed in the (Da,Re) plane. However, for Da > 5×10−4, the497

critical Reynolds number presents a very steep increase. This steep increase allows us to define a critical value of permeability498

Da ≈ 10−3, valid at least in the considered range of Reynolds numbers. Beyond this value, no growing perturbations have499

been observed in our linearized simulations performed for Da = 2× 10−3, 3× 10−3 and Re = 200, 215, 230. The value of500

the estimated wavenumber associated with the maximum Floquet multiplier shows only a variation of ≈ 6% near the marginal501
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FIG. 15. Scatter plot of (a) the maximum value of µ and (b) its associated wavenumber β , in the (Da,Re) plane. The red line sketches the
marginal stability curve for three-dimensional instability inferred from the values of µ . The black line instead denotes the marginal stability
curve for the onset of the two-dimensional von Karman vortex street. These lines define three regions with different patterns in the Da−Re
plane: steady and two-dimensional wake (white), unsteady 2D von Karman vortex street (cyan), unsteady 3D wake (light red).
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FIG. 16. Modal form of (a,d,g) first, (b,e,h) second and (c,f,i) third harmonic of the linearized velocity field, for Re = 195, Da = 9×10−4, and
β = 1.5. Each harmonic is scaled with the corresponding maximum absolute value.

stability conditions.502

Figure 15 defines three regions in the (Da,Re) space. The first one is bounded by the black curve and corresponds to the503

region where the steady two-dimensional wake is linearly stable, and it has been confirmed using time-dependent, non-linear,504

simulations. The black and red lines instead define a region in which the two-dimensional periodic vortex shedding past a505

permeable cylinder is linearly stable with respect to the 3D A-mode. Interestingly, there is a range of permeability for which506

the steady two-dimensional wake appears to be linearly stable, for Re < 250 at least, as investigated in this study. Finally, the507

region enclosed by the red curve identifies the parameter combinations in which spanwise modes are amplified and lead to three-508

dimensional dynamics. The marginal curve which separates the two-dimensional and three-dimensional dynamics obtained509

through linear stability analysis resembles the one which separates steady and unsteady two-dimensional wake. It delineates a510

minimal permeability which suppresses three-dimensional instabilities. The presence of a region in which the two-dimensional511

von Karman vortex street appears to be stable is associated with negligible lift forces on the body (see figure 7). Therefore,512

highly permeable three-dimensional cylinders are characterized by a stable two-dimensional vortex shedding, but there are no513

significant oscillating forces acting on the body.514

To complete our characterization of the three-dimensional instability, we now turn to describe the spatial structure of the modes515

near the marginal stability curve. Figure 16 shows the first three harmonics of the velocity field, for Re= 195 and Da= 9×10−4.516

The first harmonic of the x and y components of velocity strongly resembles the vortex shedding mode obtained through linear517

stability analysis (see figure 8), in the vicinity of the body. However, the modes significantly change when moving downstream.518
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FIG. 17. Modal form of (a,d,g) first, (b,e,h) second and (c,f,i) third harmonic, for Da = 9×10−4 and Re = 195 (top), Re = 230 (center) and
Re = 250 (bottom), rescaled with the corresponding maximum absolute value.

The streamwise component of the velocity field re-organizes in the region 10 < x < 20. For x > 20, structures of alternating signs519

dominate the dynamics, antisymmetric with respect to y = 0 and of larger amplitude and with shorter streamwise extent than520

the structures observed upstream. These structures progressively re-align along the downstream direction while they decrease521

their amplitude. A similar behavior is observed for the first harmonic of the y component of velocity. A mode reminiscent of the522

vortex shedding re-organizes in structures of alternating sign, symmetric with respect to the y axis. Their maximum amplitude523

is located in the vicinity of the cylinder, in opposition to the streamwise component. Also the spanwise component of velocity524

exhibits a re-organization for 10 < x < 20, which leads to structures of large amplitude and alternating sign, antisymmetric with525

respect to the y axis, that are damped for x > 50. The velocity components of the second and third harmonics instead present526

structures of smaller streamwise extent, rapidly damped when moving downstream, in the transition region of the first harmonic.527

Moreover, the third harmonic decays at a distance from the cylinder smaller than the second harmonic case. The effect of528

the Reynolds number on the spatial structure of the modes, in the vicinity of the marginal stability conditions, is reported in529

figure 17, for the y component of the velocity field. An increase in Re does not modify qualitatively the observed behavior,530

with an upstream region reminiscent of the vortex shedding mode and a downstream one characterized by alternating structures531

symmetric with respect to the y axis, of smaller streamwise extent. However, the amplitude of the first harmonic in the upstream532

region reduces (with respect to the maximum absolute value of velocity) and, at Re = 250, becomes larger in the downstream533

region. The second and third harmonic remain similar when the Reynolds number increases.534

The analysis of the spatial structure of the modes identified by DMD shows that the first harmonic is persistent for approx-535

imately x < 60, while the harmonics are rapidly damped when moving downstream. Therefore, the downstream linearized536

dynamics is dominated by a mode whose frequency coincides with the one of the vortex shedding. The effect of harmonics is537

appreciable in the region where the vortices form and detach. The harmonics present alternating structures of smaller streamwise538

extent since an increase in the shedding frequency, with the same advection, leads to smaller structures shed from the cylinder.539

In the vicinity of the marginal stability threshold, Re does not strongly affect the observed patterns. It is also interesting to540

note that the instability is present also in the vicinity of the cylinder, while the marginally stable two-dimensional modes of the541

steady baseflow were localized more downstream. This is due to the fact that the suppression of the three-dimensional instability542

occurs at values of permeability significantly lower than the ones for the quenching of the von Karman vortex street, where543

the recirculation region of the mean flow is localized in the vicinity of the body. The primary effect of permeability on the544

three-dimensional instability is the modification of the threshold for the instability, while the unstable wake patterns are similar545

to the impervious case.546

The physical mechanism underlying this stabilization of the 3D instability tentatively lies in the weakening of the deformation547

of the vortex cores, which can be qualitatively appreciated in figure 8. Comparing for instance panels (c) and (a), vortices548

forming in the wake of the more permeable cylinder are less stretched along the streamwise direction. This decreased stretching549

effect is caused by a lower strain rate in the vortex centers with increasing permeability. When the strain rate becomes too small550

(i.e. the more permeable case), the inviscid elliptic instability mechanism becomes too weak to overcome viscous damping [74]551

and the instability is quenched.552

V. CONCLUSION553

In this work, the two-dimensional flow in the wake past a permeable circular cylinder and its stability properties are studied.554

Two subsequent instabilities are investigated, i.e. the primary instability leading to a two-dimensional vortex shedding and555

the three-dimensional instability of the wake. The steady two-dimensional flow presents a recirculation region that detaches556
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from the cylinder and is shifted downstream as permeability is increased. The length of the recirculation region and the drag557

coefficient are correlated and they are non-monotonous with respect to permeability, the drag coefficient having a maximum558

at intermediate permeabilities before decreasing monotonically. Linear stability analysis of the steady two-dimensional flow is559

applied for the identification of the stable and unstable regions in the (Da,Re) parameter space. The primary instability, when560

present, leads to the formation of vortex shedding. Since vortex shedding is related to the recirculation region of the unstable561

steady configuration, it is observed that the formation of alternate vortices starts progressively more downstream as permeability562

increases. As a result, while in the impermeable case vortices form in the rear of the cylinder, the permeable case shows the563

formation of two vorticity layers which extend at a distance of some diameters past the cylinder, beyond which alternating564

vortices emerge. This downstream displacement implies a progressive damping of the oscillations of aerodynamic forces acting565

on the body. However, the mean value of drag coefficient shows a maximum at intermediate permeabilities, before decreasing566

monotonically. Finally, the shedding frequency increases moving away from the marginal stability conditions, both in terms of567

permeability and Reynolds number.568

The strong modifications of the vortex shedding underlies different stability properties with respect to spanwise, three-569

dimensional perturbations. On this regard, a Sparsity-Promoting Dynamic Mode Decomposition (SP-DMD) is applied to snap-570

shot sequences produced by the linear temporal evolution of three-dimensional disturbance. Hence, SP-DMD is used here as an571

alternative linear stability analysis tool, since it is capable of predicting the relevant structures and growth rates, in the form of572

DMD eigenmodes and eigenvalues, respectively, as well as the most unstable wavenumbers. The resulting dispersion relations,573

which are derived here as a function of Da, are similar to those of the impervious case, although the growth rate significantly574

depends on the permeability. Besides the quantitative differences in the growth rates, the critical Reynolds number for the575

three-dimensional instability is affected by permeability. In particular it slightly decreases at intermediate permeabilities while,576

for Da ≈ 10−3, it strongly increases, identifying this as an approximate critical value of permeability beyond which the vortex577

shedding remains two-dimensional in the explored range of flow parameters.578

The present work aims at giving an insight into unsteady patterns of the wake past a permeable circular cylinder, with focus579

on its three-dimensional stability and how this depends on permeability. Moreover, it demonstrates that SP-DMD can be used as580

an effective tool to perform the stability analysis of complex flows involving three-dimensional instabilities as the one at issue581

here. As possible extensions of this research activity toward Reynolds numbers larger than the one considered here, we believe582

that an important improvement, both in the analysis and from a methodological viewpoint, would be the inclusion of inertia583

through the pores by considering a steady flow at the microscopic scale in the limit of Rep = O(1) within the pores, through584

an Oseen approximation [54]. This extension would help in better describing the flow past bodies of large permeability and/or585

microscopic characteristic length (see [9] for thin permeable bodies), and extend the range of considered Reynolds number. This586

could pave the way toward the analysis of phenomena such as air-grass interactions (honami-flows), water-seagrass interactions587

(monami-flows) [75, 76], flows within catalytic reactors and through heat exchangers [77] or flows over built-up urban areas588

[78]. Moreover, larger Reynolds numbers could lead to unsteadiness and even three-dimensionality at the pore level and further589

studies may include these effects stemming from the structure arrangement at the pore level over the macroscopic problem.590
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Appendix A: Grid convergence analysis and verification of the numerical approach596

In this section, we first report the mesh convergence analysis for the linear stability analysis, performed with respect to the597

critical Reynolds number and frequency for the primary instability. For primary instability, we intend the plane two-dimensional598

instability that leads the flow from steady to unsteady (periodic-in-time). While a first verification was made on the impervious599

value of critical Reynolds number for the onset of vortex shedding, for the grid convergence analysis, we consider a case with600

large permeability and Reynolds number. To verify the mesh convergence, we (i) vary the downstream, upstream and lateral601

position of the boundary, and (ii) increase the mesh resolution. In table I (upper part) results for different domains are reported,602

obtained by progressively increasing each side of the rectangular domain. The progressive variation of the computational domain603

is performed with constant resolution along the domain’s edges. In the lower part of table I, we instead report the results with604

varying mesh resolution. The critical Reynolds number is well predicted with mesh M4, with a tolerance on the value of Re < 1605
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FIG. 18. Computational domain and refinements for mesh M4.

Mesh name x−∞ x+∞ y∞ Nel Recr Im(σ)
M4-downstream A 30 160 35 116154 204 0.82
M4-downstream B 30 180 35 123528 204 0.82
M4-downstream C 30 220 35 137928 204 0.83

M4-upstream A 40 140 35 113064 205 0.82
M4-upstream B 50 140 35 116970 205 0.82

M4-lateral 30 140 45 127526 205 0.83
M1 30 140 35 41426 204 0.83
M2 30 140 35 52874 204 0.83
M3 30 140 35 78914 204 0.83
M4 30 140 35 108834 204 0.82
M5 30 140 35 186138 204 0.83
M6 30 140 35 284234 204 0.83

TABLE I. Mesh convergence for the case Da = 4.6×10−3. The upstream and downstream boundary locations are denoted as x−∞ and x+∞,
respectively, while y∞ denotes the position of the lateral boundaries. The total number of elements of the mesh is denoted as Nel .

and relative error less than 1%, between all considered mesh and the one with finest resolution. A similar result is obtained for606

the oscillation frequency. Therefore, we conclude that mesh M4 (reported in figure 18) is suitable for the linear stability analysis607

parametric study with, at most, a relative tolerance of 1% on the critical value of Reynolds and Strouhal numbers. This mesh has608

been employed for the stability analysis.609

A similar analysis on the domain size with grids derived from mesh M4 is performed for the time-dependent non-linear610

simulations, as reported in table II. Variations of the Strouhal number are negligible, while the drag and lift coefficients vary less611

than 0.1%.612

Figure 19 shows the domain employed for the DMD-based algorithm, which is applied in a subdomain of the domain employed613

Lout St C̄d Cmax
L

90 0.199 1.435 0.256
120 0.199 1.434 0.256
140 0.199 1.434 0.256

TABLE II. Variation of Strouhal number, drag and lift coefficients with respect to the domain size, for Da = 9× 10−4 and Re = 195. The
non-linear time-dependent simulations are performed adopting a grid derived from mesh M4 where elements are progressively subtracted in
the outflow region decreasing the outflow length up to Lout = 90.
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FIG. 19. Spatial subdomain used in the DMD analysis together with relevant dimensions.

Lout Ldmd
out Tf in µ

140 30 120 0.97823
140 30 100 0.97824
140 30 80 0.97821
140 75 120 0.97823
140 50 120 0.97823
140 30 120 0.97823
140 15 120 0.97823
140 7.5 120 0.9782
140 15 120 0.97823
120 15 120 0.97803
90 15 120 0.97997

TABLE III. Convergence of the multiplier µ calculated through the DMD algorithm, Re=195, Da = 9×10−4 and β = 1.5. Lout denotes the
outlet position employed in the linearized simulations, while Ldmd

out the outlet employed for the DMD frame; Tf in instead denotes the final time
considered in the linearized simulations and for the DMD-based analysis.

for the linear, time-dependent, simulations. The variation of the Floquet multiplier between all cases, reported in table III, is less614

than 0.1% and thus acceptable for the considered parametric study.615

Lastly, in figure 20 we report a verification of our DMD-based procedure used in the computation of the Floquet multipliers µ616

as outlined in Sec.IV B. More precisely, by setting the Darcy number to a value Da= 1×10−4, which approximately corresponds617

to the case of a solid cylinder, we reproduce pointwise the results extracted by figure 5 of Barkley & Henderson [33]. We see618

that the red filled markers, which have been produced by our DMD-based eigenvalue calculation, are in fairly good agreement619

with those of Ref.33 for different Reynolds numbers Re and spanwise wavenumbers β .620
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[60] U. Lācis and S. Bagheri, A framework for computing effective boundary conditions at the interface between free fluid and a porous721

medium, Journal of Fluid Mechanics 812, 866 (2017).722
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