
Part IIISub-harmonic Faraday waves in
circular cylinders and thin annuli

205





Introduction

Orderly and intricate structures often emerge from basic building blocks in nature, such as
the crystallization of water molecules into snowflakes or the self-assembly of nucleotides
into complex DNA structures. Sand also piles into patterns of ripples or stripes in the desert,
showcasing a more diligent and efficient creation process than many human approaches that
require piece-by-piece construction.

The assembling of microscale materials has been receiving increasing attention due to
high demands in engineering architectures and systems across various fields such as tissue
engineering (Athanasiou et al., 2013; Gurkan et al., 2012), microelectromechanical systems
(Knuesel and Jacobs, 2010; Stauth and Parviz, 2006), and micro-photonics (Lu et al., 2001).
For instance, tissue engineering is particularly interesting as it involves organizing cells into
repeating units with well-defined 3D architectures to achieve tissue-specific functions neces-
sary for various applications.

In the context of microscale technologies, several methods are nowadays available for creat-
ing various structures using microscale materials. Among those, Chen et al. (2014) presented a
highly adaptable and biocompatible method for generating a wide range of structures using
microscale materials (see figure III.1). By leveraging the topography of liquid surfaces created
by standing waves, they could direct the assembly of a large number of microscale materials
into various ordered and symmetric structures. This liquid-based template can be dynami-
cally reconfigured in a very short time (in the order of a few seconds) and allows for scalable
and parallel assembly. Moreover, they demonstrated that the assembled structures can be
immobilized through chemical- and photo-crosslinking for subsequent use.

In this technique, standing wave patterns are generated by imposing to a partially filled
container a vertical harmonic forcing, with an amplitude above a critical threshold, so as to
trigger parametric Faraday waves (see also Chapter 1). It is therefore crucial to characterize
and predict the hydrodynamics at stake and, particularly, the instability onset of these waves.

In the following, we give an overview of the origin of the Faraday instability. Specifically,
we discuss the classical theoretical frameworks typically employed in the prediction and
characterization of such standing wave patterns, with a particular focus on some important
limitations and oversimplifications of these models. The latter will indeed motivate the studies
carried out in Chapters 7 and 8.
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Figure III.1 – Dynamical reconfigurability of liquid-based templated assembly (figure modified
from (Chen et al., 2014)). (a) Chamber shape effect on the assembly: circular (top) versus
squared (bottom) vessels. (b) A schematic of dynamic reconfiguration of the assembled
structures: (fA, aA) and (fB, aB) are vibrational frequencies and accelerations for the formation
of structures A and B, respectively. (c) Photo crosslinking of the assembled structure. Once the
hydrogels were assembled, crosslinking was performed to immobilize the assembled pattern.
Scale bars: 4 mm.

When a vessel containing liquid undergoes periodic vertical oscillations, the free liquid
surface may be parametrically destabilized with the excitation of standing waves depending
on the combination of forcing amplitude and frequency. The threshold at which the instability
appears is a function of the corresponding mode dissipation and the excited wavelength is
generally specified by the wave whose natural frequency is half that of the parametric excita-
tion, as first noticed by Faraday (1831), who observed experimentally that the resonance was
typically of sub-harmonic nature. This observation was later confirmed by Rayleigh (1883a,b),
in contrast with Matthiessen (1868, 1870), who observed synchronous vibrations of the free
surface with the vertical shaking. The pioneering work of Benjamin and Ursell (1954) gave
momentum to the theoretical investigations of the Faraday instability. Using first principles,
Benjamin and Ursell (1954) determined the linear stability of the flat free surface of an ideal
fluid within a vertically vibrating container displaying a sliding contact line which intersects
orthogonally the container sidewalls. The stability is governed by a system of uncoupled
Mathieu equations (see Chapter 1), which predict that standing capillary-gravity waves appear

208



inside the so-called Faraday tongues in the driving frequency-amplitude space, with the wave
response that can be sub-harmonic, harmonic or super-harmonic, hence reconciling previous
observations.

Dissipation in absence of walls

The effect of viscous dissipation, taken to be linear and sufficiently small, was initially intro-
duced heuristically (Lamb, 1993; Landau and Lifshitz, 1959) in the inviscid solution, resulting
in a semi-phenomenological damped Mathieu equation, which was later proven by the viscous
linear Floquet theory of Kumar and Tuckerman (1994b) to be inaccurate, even at small viscosi-
ties. An improved version of the damped Mathieu equation, accounting in a more rigorous
manner for the dissipation taking place in the free surface and bottom boundary layer, was
proposed by Müller et al. (1997), who also noticed in their experiments that the fluid depth can
affect the Faraday threshold, with harmonic responses most likely to be triggered for thin fluid
layers. The viscous theory of Kumar and Tuckerman (1994b), formulated for a horizontally
infinite domain, was found to give good agreement with the small-depth large-aspect-ratio
experiments of Edwards and Fauve (1994), where the influence of lateral walls was negligi-
ble. If indeed, at large excitation frequencies, where the excited wavelength is much smaller
than the container characteristic length, the accessible range of spatial wavenumber is nearly
continuous, in the low-frequency regime of single-mode excitation the mode quantization
owing to the container sidewall becomes a dominant factor, leading to a discrete spectrum of
resonances.

Mobile contact lines

A generalization of the viscous Floquet theory to spatially finite systems can be readily obtained
by analogy with the inviscid formulation of Benjamin and Ursell (1954), as Batson et al. (2013)
recently proposed (see figure III.2(a)). It has however intrinsic limitations as it relies on ideal
lateral wall conditions, i.e. the unperturbed free surface is assumed to be flat, the contact line
is ideally free to slip with a constant zero slope and the stress-free sidewall boundary condition
is required for mathematical tractability, since it allows for convenient Bessel-eigenfunctions
representation. With the noticeable exception of the sophisticated experiments by Batson et al.
(2013) and Ward et al. (2019) using a gliding liquid coating, these assumptions, by overlooking
the contact line dynamics, lead in most experimental cases to a considerable underestimation
of the actual overall dissipation, resulting in many cases in an inaccurate prediction of the
linear Faraday thresholds in small-container experiments (Benjamin and Ursell, 1954; Ciliberto
and Gollub, 1985; Das and Hopfinger, 2008; Dodge et al., 1965; Henderson and Miles, 1990;
Tipton and Mullin, 2004). The complexity lies primarily in the region of the moving contact
line, where molecular, boundary layer and macroscopic scales are intrinsically connected.
Despite the significant efforts devoted by several authors to its theoretical understanding (Case
and Parkinson, 1957; Cocciaro et al., 1993, 1991; Davis, 1974; Hocking, 1987; Jiang et al., 2004;
Keulegan, 1959; Miles, 1967, 1990, 1991; Perlin and Schultz, 2000; Ting and Perlin, 1995), the
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Figure III.2 – (a) Stability map in the driving parameter space computed via Floquet analysis
by Batson et al. (2013) for a bi-layer fluid system in a small cylindrical container and assuming
ideal sidewall conditions: flat static surface and stress-free sidewall, i.e. the viscous boundary
layer at the lateral wall is neglected and the static contact angle is ideally assumed µs = 90±.
The insets show few free surface shapes. (b) A way to eliminate the static meniscus is to
fill the container up to the rim (brimful). This configuration also allows one to control the
shape and size of the meniscus by slightly underfilling or overfilling the container (nearly-
brimful condition, µs 6= 90±). An oscillating meniscus emits meniscus waves, which have a
zero threshold, oscillate harmonically with the forcing and appears as concentric ripples.
For forcing amplitudes f above the Faraday threshold, fth , those waves interact with the
parametric waves and produce new patterns.
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comparison with moving-contact-line experiments, due to unavoidable sources of uncertainty
in the meniscus dynamics, remained mostly qualitative, rather than quantitative, requiring
often the use of fitting parameters, e.g. a larger effective fluid viscosity (Henderson and Miles,
1990).

Pinned contact lines

A natural means to get rid of the extra dissipation produced by the contact line dynamics
is to simply pin the free surface at the edge of the sidewall, i.e. the container is filled to
the brim (brimful condition), as shown in figure III.2(b)). In such a condition, the overall
dissipation is ruled by that occurring in the fluid bulk and in the Stokes boundary layers at
the bottom and at the solid lateral walls, where the fluid obeys the classic no-slip boundary
condition, relaxing the stress-singularity at the contact line (Davis, 1974; Huh and Scriven,
1971; Lauga et al., 2007; Miles, 1990; Navier, 1823; Ting and Perlin, 1995). Even in the inviscid
context, the problem of a pinned contact line boundary condition is well-posed, as shown
by the seminal works of Benjamin and Scott (1979) and Graham-Eagle (1983), who first
solved the resulting dispersion relation for inviscid capillary-gravity waves with a free surface
pinned at the container brim using a variational approach and a suitable Lagrange multiplier.
Since then, several semi-analytical techniques, often combining an inviscid solution with
boundary layer approximations and asymptotic expansions accounting for viscous dissipation,
have been therefore developed to solve the pinned contact line problem, for example in
cylindrical containers (Henderson and Miles, 1994; Kidambi, 2009b; Martel et al., 1998; Miles
and Henderson, 1998; Nicolás, 2002, 2005). The resulting predictions of natural frequencies
and damping coefficients of these capillary-gravity waves, in contradistinction with the case
of a moving contact line, showed a remarkable agreement with experimental measurements
(Henderson and Miles, 1994; Howell et al., 2000).

Ubiquity of Meniscus waves

Within the framework of the Faraday instabilities, this pinned contact line condition can be
reached by carefully filling up the vessel to the brimful condition, as done by Douady (1990)
and Edwards and Fauve (1994), among others. Nevertheless, as noticed by Bechhoefer et al.
(1995), these delicate experimental conditions are not always perfectly achieved, leading to the
presence of a minute meniscus. As mentioned for instance by Douady (1990), the meniscus
cannot remain steady upon the oscillating vertical motion of the vessel, which results in the
emission of travelling waves from the sidewall to the interior. Irrespective of the pinned or
free-edge nature of the contact line, these so-called meniscus waves are synchronized with the
excitation frequency. They are not generated by the parametric resonance, but rather by the
modulation of the gravitational acceleration resulting in an oscillating capillary length. They
do not need to overcome a minimal threshold in forcing amplitude to appear, are therefore
observable in the whole driving frequency-amplitude space and are well described by a purely
linear response, i.e. at sufficiently small forcing amplitude, the meniscus-wave amplitude is
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lc ≈ ( γ/ρg )1/2
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Figure III.3 – (a) A meniscus, the typical length of which is the capillary length lc =
°
∞/Ωg

¢1/2,
with ∞ the liquid surface tension, Ω the liquid density and g the gravity acceleration, is always
excited by a vertical oscillation. When the cell goes up, the effective gravity is increased and
the meniscus length decreases. So it emits a surface wave in order to preserve the mass. For
a vertical oscillation of the vessel, the meniscus thus produces an isochronous wave. (b)
Photograph of a wave emitted by the meniscus of an oil layer of depth h = 2mm, in a square
cell 80£80£5mm2, at a forcing frequency of 20Hz, visualized by the vertical reflection of a
light beam. The waves are clearly generated from the boundaries and quickly damped so that
the center of the cell is still flat. Without any meniscus, the surface remains flat even during
vertical oscillation (Douady, 1990).

proportional to the external forcing amplitude.
As stated by Douady (1990), edge waves constitute a new time-dependent base state on which
the instability of parametric waves may develop, possibly blurring the experimental detec-
tion of the true Faraday thresholds (see figure III.3). This has led researchers to attempt to
suppress edge waves by selecting large-aspect-ratio containers where sidewall effects are neg-
ligible, using sloping sides or shelf conditions to mitigate edge waves by impedance matching
(Bechhoefer et al., 1995), or employing highly viscous fluid which damps out these waves
(Bechhoefer et al., 1995; Douady, 1990).

With interests in pattern formation, pure meniscus-waves-patterns were investigated for
themselves by Torres et al. (1995), while complex patterns originated by the coupling of
meniscus and Faraday waves were recently described by Shao et al. (2021a,b) for small circular-
cylinder experiments. A discussion about harmonic Faraday waves disturbed by harmonic
meniscus waves is also outlined in Batson et al. (2013), where the presence of edge waves in
a small circular-cylinder-bilayer experiment leads to an imperfect bifurcation diagram, also
referred to as a tailing effect by Virnig et al. (1988), who analyzed sub-harmonic responses
only. Interestingly, in some cases, e.g. liquid-based biosensors for DNA detection (Picard and
Davoust, 2007), tunable small-amplitude stationary waves as meniscus waves are actually
desired and preferred to saturated larger-amplitude Faraday waves. In such applications, a
starting brimful condition, having a contact line fixed at the brim, is ideal since the effective
static contact angle at the wall and hence the size and shape of the static meniscus, which will
emit edge waves under vertical excitations, can be adjusted simply by increasing or decreasing
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the bulk volume (nearly–brimful condition, see figure III.2(b)).
Although the non-conventional eigenvalue problem for natural frequencies and damping

coefficients of pinned-contact-line capillary-gravity waves was tackled by several authors
mentioned above and in spite of the vastness of literature focused on Faraday waves, there is a
lack of a comprehensive theoretical framework for the investigation of such a configuration
within the context of Faraday instability.

An important exception is the work of Kidambi (2013). Assuming inviscid Faraday waves in
a brimful cylinder with an ideally flat static free surface, he represented the problem using
appropriate modal solutions followed by a projection on a test function space and showed
that pinned contact line condition resulted in an infinite system of coupled Mathieu equa-
tions, unlike the classic case of an ideal moving contact line (Benjamin and Ursell, 1954).
Nevertheless, viscosity, crucial for an accurate prediction of the Faraday threshold and the
associated emergence of the standing wave pattern, was not included in the analysis, nor
was the presence of a static meniscus and its consequent emission of meniscus waves. Some
attempts to include meniscus modifications to the Faraday thresholds have been made by
several authors by including periodic inhomogeneities (Ito et al., 1999; Tipton, 2003) and
phenomenological terms (Lam and Caps, 2011) to an ad hoc damped Mathieu equation.

Following this literature survey, the purpose of Chapter 7 is to take one more step in the
direction undertaken by Kidambi (2013), by rigorously accounting for (i) viscous damping,
(ii) a pinned contact line and (iii) the presence of a static meniscus at rest. As mentioned
above, a contact angle different from 90 degrees not only results in a static meniscus but also
induces the emission of meniscus waves as the static meniscus shape is no longer a solution
to the forced problem, even below the Faraday threshold. A Floquet-inspired linear theory à
la Kumar and Tuckerman (1994b) cannot be pursued, as perturbations develop around an
oscillating base flow. In contrast, we propose to use the weakly nonlinear approach (WNL) to
approximate the linear Faraday bifurcations, although it is expected to involve cumbersome
calculations.

Weakly nonlinear analysis

Weakly nonlinear analyses (Chen and Vinals, 1999; Douady, 1990; Henderson and Miles, 1990;
Jian and Xuequan, 2005; Meron and Procaccia, 1986; Miles, 1984b; Milner, 1991; Nagata, 1989;
Nayfeh, 1987; Rajchenbach and Clamond, 2015a; Skeldon and Guidoboni, 2007; Zhang and
Vinals, 1997) have indeed been widely used in the context of Faraday instabilities to study
the wave amplitude saturation via super and subcritical bifurcations, as well as to investigate
pattern and quasi-pattern formation (Edwards and Fauve, 1994; Stuart and Fauve, 1993) or
spatiotemporal chaos (Ciliberto and Gollub, 1985; Gluckman et al., 1993), arising when two
modes with nearly the same frequency share the same unstable region in the parameter space
and strongly interact. In contradistinction to these previous studies, the presence of a static
meniscus calls for a WNL approach not only to estimate the wave amplitude saturation in
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the weakly nonlinear regime but also to predict the Faraday threshold. Hence, with regard to
cylindrical straight-sidewalls and sharp-edged containers, as the one considered by Shao et al.
(2021b), we derive a WNL model capable of simultaneously accounting for viscous dissipation,
static meniscus and meniscus waves, thus allowing us to predict their influence on the linear
Faraday threshold for standing capillary-gravity waves with pinned contact line as well as
their saturation to finite amplitude. Following the recent experimental evidence of Shao et al.
(2021b), we focus on single-mode sub-harmonic resonances. To this end, the full system of
equations governing the fluid motion is solved asymptotically by means of the method of
multiple timescales, involving a series of linear problems, which are solved numerically. The
theoretical model results in a final amplitude equation for the wave amplitude, B , whose form
corresponds to that derived by Douady (1990) using symmetry arguments solely and keeping
low order terms only,

dB
d t

=° (æ+ i§/2)B +≥F B§+∫|B |2B.

where æ is the damping coefficient, § is the frequency-detuning parameter and the star
symbol denotes the complex conjugate. This equation correctly predicts the existence of a
so-called sub-harmonic Faraday tongue in the driving frequency-amplitude (i.e. the≠d -Fd )
plane. Within the tongue, the forced response driven at≠d is linearly unstable and a solution
oscillating ! (which is sufficiently close to≠d /2) emerges. The equation above is indeed valid
whatever the shape of the static surface, mode structure and the boundary condition are, but
the normal form coefficients ≥ and ∫, which account for the effect of the static contact angle
and which are complex values owing to the presence of viscosity, are here formally determined
in closed form from first principles and computed numerically.

Faraday waves in Hele-Shaw cells

When it comes to Faraday waves in Hele-Shaw cells, it is even more crucial to pay close
attention to the treatment of the sidewall and contact line conditions, as these factors play a
dominant role in this configuration.

Recent Hele-Shaw cell experiments have enriched the knowledge of Faraday waves (Faraday,
1831). Researchers have uncovered a new type of highly localized standing waves, referred
to as oscillons, that are both steep and solitary-like in nature (Rajchenbach et al., 2011) (see
figure III.4(a,b)). These findings have spurred further experimentations with Hele-Shaw cells
filled with one or more liquid layers, using a variety of fluids, ranging from silicone oil, and
water-ethanol mixtures to pure ethanol (Li et al., 2018b) (figure III.4(c)). Through these experi-
ments, new combined structures produced by triadic interactions of oscillons were discovered
by Li et al. (2014) (figure III.4(d,e)). Additionally, another new family of waves was observed
in a cell filled solely with pure ethanol and at extremely shallow liquid depths (Li et al., 2016,
2015) (figure III.4(f)).
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Figure III.4 – (a) Even and (b) odd standing solitary waves. Driving frequency, 11Hz; vibration
amplitude, 4.1mm; the wave amplitudes are of the order of 1.2cm (Rajchenbach et al., 2011).
(c) The wave profile of two coupled Faraday waves observed in a two layers system of pure
ethanol (depth d1 = 4mm) and silicone oil (depth d2 = 8mm) in the case of a forcing frequency
of 18Hz and acceleration 16m/s2 (Li et al., 2018b). (c,d) High localization of oscillons. Experi-
ments were performed in 15% ethanol-water solution at a frequency of 18Hz, an acceleration
amplitude of 20.503m/s2, and a fluid depth of 2cm. The right oscillon preserves the same
structure in the (d) and (e). The left oscillon is single-peaked in the (d) but becomes double-
peaked in the (e) by additional disturbance of the free surface (Li et al., 2014). (a)-(e) are
experimental time snapshots. (f) Snapshots of the Faraday wave profiles in extreme shallow
depth (2mm) and observed for absolute ethanol at a forcing frequency of 18Hz and forcing
acceleration 19.80m/s2 (Li et al., 2015). In the various sub-panels, T denotes the wave period.

These findings represent a new contribution to the understanding of the wave behaviour
in Hele-Shaw configurations. In this regard, it becomes therefore essential to have a reliable
stability theory that can explain and predict the instability onset for the emergence of initial
wave patterns.

Notwithstanding two-dimensional direct numerical simulations (Périnet et al., 2016; Ubal
et al., 2003) have qualitatively reproduced standing wave patterns reminiscent of those ob-
served experimentally (Li et al., 2014), ignoring the effect of internal wall attenuation leads to
an oversimplified model that is not capable of quantitatively predicting the instability regions
(Benjamin and Ursell, 1954; Kumar and Tuckerman, 1994a) and is not suitable for modelling
Hele-Shaw flows. On the other hand, when attempting to perform three-dimensional sim-
ulations of fluid motions within a Hele-Shaw cell, one of the primary challenges that arises
is the high computational cost associated with this task. Due to the small dimension in the
narrow direction, the grid cell size must be set even smaller in order to accurately capture the
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shear dissipation that occurs within the boundary layer. As a result, the computational cost of
performing such simulations rapidly increases.

To overcome these challenges and arrive at a more accurate yet efficient approach for re-
solving the fluid dynamics within this system, researchers have largely invoked the use of
Darcy’s law to treat the confined fluid between two vertical walls as though it were flowing
through a porous medium. When gap-averaging the linearized Navier-Stokes equation, this
approximation, which assumes a steady parabolic flow in the short dimension, translates
into a real-valued damping coefficient æ 2 R that scales as 12∫/b2, with ∫ the fluid kinematic
viscosity and b the cell’s gap-size, and which represents the boundary layer dissipation at the
lateral walls. However, Darcy’s model is known to be inaccurate when unsteady and convec-
tive inertias, e.g. through the advection of momentum, are not negligible, such as in waves
(Kalogirou et al., 2016). It is not mathematically straightforward to consistently reintroduce
convective terms in the gap-averaged Hele-Shaw equations (Plouraboué and Hinch, 2002;
Ruyer-Quil, 2001).

Li et al. (2019) applied a Kelvin-Helmholtz-Darcy theory proposed by Gondret and Rabaud
(1997) to reintroduce advection and obtain the nonlinear gap-averaged Navier-Stokes equa-
tions, which have been then implemented in the open-source code developed by (Popinet,
2003, 2009) to simulate Faraday waves in a Hele-Shaw cell. Although this gap-averaged model
has been compared to several experiments showing fairly good agreements, the surface ten-
sion term is still two-dimensional, as the out-of-plane interface shape is not directly taken into
account. This simplified treatment overlooks the contact line dynamics and may sometimes
lead to miscalculations. Advances in this direction were made by Li et al. (2018a), who found
that the out-of-plane capillary forces or curvature should be retained in order to improve the
description of the wave dynamics, as experimental evidence suggests. By employing a more
sophisticated model, coming from molecular kinetics theory (Blake, 1993, 2006; Hamraoui
et al., 2000), to include the capillary contact line motion arising from the small scale of the
gap-size between the two walls of a Hele-Shaw cell, they derived a novel dispersion relation,
which indeed better predicts the observed instability onset.

Unfortunately, they couldn’t exactly predict the exact instability thresholds as some dis-
crepancies were still found. This mismatch was tentatively attributed to factors that are not
accounted for in the gap-averaged model, such as the extra dissipation on the lateral walls
in the elongated direction. Of course, a lab-scale experiment using a rectangular cell cannot
entirely replace an infinite-length model, but if the container is sufficiently long, then this extra
dissipation should be negligible. Other candidates were identified in the phenomenological
contact line model or free surface contaminations.

If these factors can certainly be sources of discrepancies, our guess is that something more
profound could be at the origin of the discordance between theory and experiments in the
first place.

Despite the use of the Darcy approximation is well-assessed in the literature, the choice of a
steady Poiseuille flow to build up the gap-averaged model appears in fundamental contrast
with the unsteady nature of oscillatory Hele-Shaw flows, such as Faraday waves. At low enough
oscillation frequency ! or for sufficiently viscous fluids, the thickness of the oscillating Stokes
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boundary layer, ±0 =
p

2∫/!, becomes comparable to the cell gap, b, i.e. 2±0/b º 1: the Stokes
layers over the lateral solid faces of the cell merge and eventually invade the entire fluid bulk.
In such scenarios, the Poiseuille profile gives an adequate flow description, but this requisite
is rarely met in the above-cited experimental campaigns. It appears, thus, very natural to ask
oneself whether a more appropriate description of the oscillating boundary layer impacts the
prediction of stability boundaries.
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Figure III.5 – Womersley velocity profiles (modified figure from San and Staples (2012)) in a
cell of width b and for different Womersley number W o = b
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Stokes boundary layer thickness and is a function of the fluid kinematic viscosity ∫ and the
characteristic oscillation frequency of the flow !. For W o ∑ 2, viscous forces dominate the
flow, and the pulse is considered quasi-static with a parabolic profile. For W o ∏ 2 the inertial
forces are dominant in the central core, whereas viscous forces dominate near the boundary
layer. Thus, the velocity profile gets flattened, and the phase between the pressure and velocity
gets shifted towards the core, with a complete phase opposition in the limit of a plug flow.

The study reported in Chapter 8 is precisely devoted to answering this question by proposing
a revised gap-averaged Floquet analysis, based on the classical Womersley-like solution for
the pulsating flow in a channel (Womersley, 1955) (see figure III.5).
Following the approach taken by Viola et al. (2017), we examine the impact of inertial effects
on the instability threshold of Faraday waves in Hele-Shaw cells, with a focus on the unsteady
term of the Navier-Stokes equations. This scenario corresponds to a pulsatile flow where the
fluid’s motion reduces to a two-dimensional oscillating Poiseuille flow and it seems better
suited than the steady Poiseuille profile to investigate the stability properties of the system.
When gap-averaging the linearized Navier-Stokes equation, this results in a modified damping
coefficient, a function of the ratio between the Stokes boundary layer thickness and the cell’s
gap, and whose complex value will depend on the frequency of the wave response specific to
each unstable parametric region.
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First, we consider the case of horizontally infinite rectangular Hele-Shaw cells by also account-
ing for the same dynamic contact angle model employed by Li et al. (2019), so as to quantify
the predictive improvement brought by the present theory. A vis-à-vis comparison with ex-
periments by Li et al. (2019) points out how the standard Darcy model often underestimates
the Faraday threshold, whereas the present theory can explain and close the gap with these
experiments.
The analysis is then extended to the case of thin annuli. This less common configuration has
already been used to investigate oscillatory phase modulation of parametrically forced surface
waves (Douady et al., 1989) and drift instability of cellular patterns (Fauve et al., 1991). For
our interest, an annular cell is convenient as it naturally filters out the extra dissipation that
could take place on the lateral boundary layer in the elongated direction, hence allowing us
to reduce the sources of extra uncontrolled dissipation and perform a cleaner comparison
with experiments. Our homemade experiments for this configuration highlight how Darcy’s
theory overlooks a frequency detuning that is essential to correctly predict the locations of
the Faraday’s tongues in the frequency spectrum. These findings are well rationalized and
captured by the present model.
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