
1 Introduction

1.1 Classification of oscillatory fluid systems via linear stability

The transition from one flow state to another with the appearance of new patterns and un-
steadiness is ubiquitous in fluid mechanics. A few representative examples of interesting
oscillatory flows are shown in figure 1.1, namely (a,b) the famous von Kármán vortex street,
which manifests in the wake of bluff bodies when the flow advection is sufficiently high, (c,d)
a laminar-to-turbulent transition in jet flowing out of a circular nozzle and (e) surface waves
in an agitated glass of water. These examples of oscillations in fluids are not merely academic
but are rather fundamentally relevant to a broad spectrum of industrial applications, e.g. in
the design of turbojet nozzles (d) or in the structural and dynamical analysis of skyscrapers
and tanker ships (f), for which resonant vortex- or sloshing-induced vibrations could lead to
catastrophic failures.

At the core of their fluid dynamic descriptions are the Navier-Stokes equations, which are a
direct consequence of mass conservation and Newton’s second law applied to an incompress-
ible volume of fluid and govern the fluid velocity and pressure fields,
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¢T ,

@u
@t

+ (u ·r)u =°rp + 1
Re
¢u, r ·u = 0, (1.1)

and where Re is the Reynolds number, a nondimensional number that quantifies the relative
importance between flow advection and diffusion. The Navier-Stokes equations, supple-
mented with proper case-dependent initial and boundary conditions, have been demon-
strated capable of successfully englobing and describing the interplay of multiple physical
mechanisms, such as advection, dissipation, external body forces, capillary and geometrical
effects, turbulence, etc., in a large variety of experiments and applications. This incredi-
ble complexity often complicates the understanding of the individual physical mechanisms
behind the transitions between different flow states and patterns and the emergence of un-
steadiness.

For such reasons, one area of fluid mechanics that witnessed explosive growth at the end of
the 20th century and that is still full of life is the study of hydrodynamic instabilities and the
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Figure 1.1 – (a) von Kármán vortex street behind a circular solid cylinder (photograph by Jürgen
Wagner: https://commons.wikimedia.org/wiki/File:Karmansche_Wirbelstr_kleine_Re.JPG)
and (b) around industrial cylindrical cables (inset from Seyed-Aghazadeh et al. (2021)). (c)
Smoke visualisation of a jet flow (Huck, 2017) with industrial application in turbojets (d)
(https://defencyclopedia.com/2015/05/13/explained-how-jet-engines-work/). (e) Snapshot
of sloshing waves in a partially filled container with important applications in liquid transport,
i.e., tanker ships’ safety (f) (Credit: alexyz3d/AdobeStock) (inset from Pastoor et al. (2005)).

associated nonlinear phenomena, through linear stability and asymptotic theories.
Stability theory is indisputably the most classical approach to describe instability and state

transitions, e.g. steady-to-unsteady, through bifurcations (Charru, 2011; Chomaz, 2005; Drazin
and Reid, 2004; Huerre and Monkewitz, 1990; Huerre and Rossi, 1998; Schmid et al., 2002;
Theofilis, 2011). The regime transition affecting a flow when a control parameter, such as Re,
is varied, can be investigated by computing the linear stability of a base flow, q0 =

°
u0, p0

¢T ,
representing an equilibrium solution of (1.1) for fixed control parameters, to infinitesimal
time-dependent perturbations, i.e. q1 =

°
u1, p1

¢
, such that the total flow is decomposed as

q = q0 +q1, with ||q1||ø ||q0||. After introducing this flow decomposition in (1.1) and, succes-
sively, discretizing the linearized system of governing equations into an algebraic system, one
can adopt the formalism of the dynamical system theory so as to write down the linearised
Navier-Stokes equations in a compact form as

M
dq1

d t
=L q1, (1.2)

where M is a mass matrix and the linearized Navier-Stokes operator L depends on the
equilibrium state q0 computed for a fixed Re.
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1.1. Classification of oscillatory fluid systems via linear stability

One can seek a linear eigensolution of (1.2) in the standard normal form q1 = q̂1n (x)e(æn+i!n )t ,
where the natural mode q̂1n (x) and its associated eigenvalue ∏n =æn + i!n , are eigensolutions
of the generalized eigenvalue problem

∏nM q̂1n =L q̂1n . (1.3)

Let us suppose that at some threshold value, e.g., of the Reynolds number, Re = Recr , the sys-
tem becomes unstable to infinitesimal perturbations with growth rate, æn = 0, and frequency,
!n . This is, for instance, the case of the cylinder flow of figure 1.2(a). Then, linear stability
analysis will predict the exact value of Re = Recr at which the instability first manifests. As for
Re > Recr the growth rate is positive, æn > 0, we expect the unstable infinitesimal perturbation
(eigenmode) q̂1n to grow exponentially in time until the system progressively evolves towards
a limit cycle with a large-time finite perturbation amplitude saturated by nonlinear effects,
as depicted in figure 1.2(b). Moreover, if the value of !n at Recr differs from zero as in the
cylinder flow, then the instability is oscillatory and a steady-to-unsteady regime transition
occurs in the flow via a Hopf bifurcation (Jackson, 1987; Provansal et al., 1987; von Kármán,
1921; Williamson, 1988), found to be supercritical in this case (see figure 1.2(c)).

In the following, three archetypal flow problems are used to categorised unsteady oscillatory
flows into three main families, namely oscillators, amplifiers and resonators, on the basis of
the stability properties of their corresponding linearized Navier-Stokes operator, L .

We will use !n to denote a natural frequency of the system, ! to indicate the actual fre-
quency of the nonlinear system’s response, whereas≠= 2º/T will refer to an external driving
frequency of oscillation period T .
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Figure 1.2 – Sketch of the supercritical Hopf bifurcation and steady-to-unsteady state transition
in the cylinder flow (modified figure from (Mantič-Lugo, 2015)). (a) Sketch of the transition
from stable to unstable given by a positive growth rate æn at the critical Reynolds number
Recr . (b) Sketch of the evolution with Reynolds number Re of the saturated finite amplitude
A of the periodic fluctuations, which is modelled by the Stuart-Landau amplitude equation
(Stuart, 1960). (c) Flow visualization of the steady base flow (bottom) and a time-snapshot of
the unsteady oscillatory regime for Re > Recr (top).
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Figure 1.3 – Oscillators: cylinder flow at Re = 140 (figure modified from Dyke (1982)); (a) linear
stability analysis (LSA) of an unstable base-flow (Re > Recr ) in the cylinder flow showing an
eigenvalue spectrum with a single unstable mode of natural frequency !n ; (d) Power spectral
density function (PSD) extracted from a signal in the cylinder wake, showing a clear peaked
frequency associated with the von Kàrmàn vortex street (Pier, 2002); (g) Time-dependent
and local signal of the horizontal velocity extracted from a DNS of the cylinder flow at Re =
100 (Mantič-Lugo, 2015), showing the initial exponential growth, ª exp(æn t ), as well as the
finite-amplitude saturation to a limit cycle with oscillation frequency !LC 6=!n . Amplifiers:
turbulent jet at Re = 10000 (from Dyke (1982)); (b) LSA on the mean flow of a turbulent jet
displaying a flat, stable spectrum (Nichols and Lele, 2010); (e) PSD of signals extracted at
various streamwise locations x in a turbulent jet and showing a broad frequency response to
noise (Bogey et al., 2007). Resonators: sloshing waves in a rectangular cell (Bäuerlein and Avila,
2021); (c) linear spectrum displaying a series of discrete and slightly damped eigenmodes; (f)
PSD experimentally measured for a longitudinal time-periodic container motion of frequency
≠ and showing a main peak at !/≠= 1; (h) The linear response peaks around ≠º!n with
an amplification / 1/æn . The nonlinear response saturates at lower values and bends the
resonance curve, a feature successfully modelled by the Duffing equation (Duffing, 1918).
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1.1. Classification of oscillatory fluid systems via linear stability

1.1.1 Oscillators

Figure 1.3(a) shows the eigenvalue spectrum obtained by performing the linear stability
analysis (LSA) of a base-state for the famous cylinder flow, already discussed at the end of the
previous section. The spectrum at Re > Recr displays a well-isolated eigenvalue with natural
oscillation frequency !n and with a positive growth rate æn , meaning that the equilibrium
(steady) solution considered, q0, is unstable. When looking at the power spectral density (PSD)
of a time series extracted from a nonlinear flow field experimentally or numerically computed
(see figure 1.3(d)), a dominant and clear peaked frequency associated with the von Kármán
vortex street, together with a few higher-order harmonics of lower PSD, is well identifiable.
This is a consequence of the presence of an “outstanding" eigenvalue that dictates the long-
term behaviour of an initial small perturbation. More precisely, the unstable eigenmode and
eigenvalue of L describe the initial structure and growth of the perturbation (Theofilis, 2011)
before its amplitude becomes too big and nonlinear interactions come into play (Barkley, 2006;
Sipp and Lebedev, 2007). If the natural frequency, !n , differs from zero, as in figure 1.3(a),
the flow becomes unsteady and oscillates spontaneously in a self-sustained manner. For this
reason, unstable flows are typically referred to as oscillators (Huerre and Rossi, 1998).

Although oscillations naturally emerge without the need for external driving, the latter can be
applied for control strategies. For instance, in certain cases, the vortex-shedding phenomenon
can cause concerning structural vibrations and drag increases (Choi et al., 2008). When dealing
with fluid-induced vibration issues, it’s crucial to note that unstable flow frequencies can only
really become hazardous when they align with the structural modes. Therefore, adjusting
the flow’s frequency slightly could be a viable solution to resolve the problem. This can be
achieved in open-loop control by imposing to the unstable flow an external harmonic forcing
of frequency≠, amplitude f and with a proper spatial structure, q f (x) (Sipp, 2012). Indeed, if
the forcing frequency≠ is chosen close to the natural frequency !n , then the flow oscillations
will lock onto≠, so as to shift the frequency and move it away from the resonance (see Fauve
(1998), Bender et al. (1999) and Chapter 8 of Charru (2011) for further details on the lock-in
phenomenon).

1.1.2 Amplifiers

In figure 1.3(b) we report the eigenvalue spectrum of an amplifier flow, i.e. a laminar jet of air
flows exiting a circular tube and whose edges, moving downstream, develop axisymmetric
oscillations, rolls up into vortex rings, and then abruptly becomes turbulent. Despite the
fact that the eigenvalue-spectrum is fully stable, the PSD function of a local time-series in
the jet flow, reported figure 1.3(e), shows that small harmonic external excitations result in
a large amplification of the system responses (Crow and Champagne, 1971). Moreover, the
system response has a rather broad or mildly selective frequency selection mechanism, with a
frequency of maximum amplification which does not necessarily match one of the least stable
modes. These features can be better understood by drawing attention to the non-normality of
the linear operator L . A linear operator L is said to be non-normal if it does not commute
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with its adjoint operator, L †, i.e. L L † 6=L †L . It is important to note that the definition of
the adjoint operator is not univocal, but rather depends on the introduction of an arbitrary
inner product, although the latter is very often chosen so as to represent an energy norm for
the system, e.g. the total or kinetic energy. If the operator is non-normal, the eigenmode basis
is not orthogonal. It follows that, even for a stable operator, whose eigenmodes all decay at
large times, small initial perturbations may experience very large transient growth. Strong
non-normality also possibly implies high sensitivity to small operator perturbations and a
large response to harmonic forcing away from eigenfrequencies (Ducimetière et al., 2022a,b;
Trefethen et al., 1993), hence arguing for the importance of sensitivity analysis and flow control
of these systems (Bottaro et al., 2003; Boujo and Gallaire, 2015; Camarri, 2015; Sipp et al., 2010).
In the case of the Navier-Stokes operator, non-normality is generally produced by strong
streamwise advection of the base flow (Chomaz, 2005; Farrell and Ioannou, 1996; Schmid,
2007; Schmid et al., 2002; Trefethen et al., 1993). Therefore, the linear stability analysis, capable
of predicting the instability onset in oscillators with a dominant unstable eigenmode, appears
almost irrelevant in these scenarios and it thus fails in describing the dynamics of strongly
non-normal flows like noise amplifiers.

1.1.3 Resonators

An example of a resonator is represented by sloshing, a term used to denote any motion
of the free liquid surface in a partially filled reservoir subjected to horizontal motions, i.e.
perpendicular to the direction of gravity. Figure 1.3(c) shows the eigenvalue spectrum of a
typical sloshing system. The eigenvalues correspond to the natural sloshing modes, i.e. free
surface capillary-gravity waves, for a container, e.g. rectangular, partially filled with a liquid
and undergoing a longitudinal harmonic motion at a driving frequency≠= 2º/T (see also
figure 1.4). In absence of external forcing, the equilibrium or base-state configuration for this
flow is a liquid column stably at rest under the effect of gravity. Thus, similarly to the amplifier
system of figure 1.3(b), the linear spectrum is stable, although the eigenvalues are here well
separated from each other, as a result of the lateral confinement, which, through necessary
boundary conditions, only allows for some specific modal perturbations (Faltinsen and Tim-
okha, 2009; Ibrahim, 2005). In our classification, what fundamentally discerns resonators
from amplifiers is the normal nature of the linearized Navier-Stokes operator. Indeed, for
resonators like that of figure 1.3, the linearized operator L is typically normal, meaning that it
commutes with its adjoint (Viola et al., 2018; Viola and Gallaire, 2018), i.e. L L † =L †L (and
L is said to be self-adjoint). As a consequence, the eigenmode basis is fully orthogonal. These
features have strong implications for the system’s response to perturbations and harmonic
forcing in resonators. Given the stability and self-adjointness of L , the linear evolution of
initial perturbations, which is given by the superposition of eigenvectors, shows a decaying
large-time behaviour without experiencing any transient growth. Furthermore, a sustained
oscillatory response can only be achieved by externally driving the system, e.g. at a forcing
frequency≠. If the system is subjected to white noise or, more simply, to a harmonic forcing
of varying frequency≠, the maximum amplification is achieved in the neighbourhood of a
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1.1. Classification of oscillatory fluid systems via linear stability

natural frequency, i.e. for≠º!n , with a linear amplitude response ª 1/æn (see figure 1.3(h)),
hence showing a very precise frequency selection mechanism, in contradistinction with the
broad frequency response of amplifiers.

Within the family of resonators, we can further distinguish among three sub-classes of oscilla-
tory responses depending on their nature, namely driven oscillations, parametric oscillations
and natural transient oscillations resulting from a non-zero initial condition.

fcos(2!t/T)

Figure 1.4 – Top: A sketch of the experimental apparatus of Bäuerlein and Avila (2021) and
snapshots of different sloshing states observed. Bottom: Sloshing liquid in a horizontally
oscillated rectangular tank over one oscillation period (Bäuerlein and Avila, 2021). The tank
has a width of w= 500mm, is filled with water to the height h = 400mm and is driven with
the frequency ≠ = 2º/T , with T = 0.88s (1/T = 1.13Hz). Nonlinear resonances amplify
periodic surface waves (marked as a red line) and produce oscillations of the liquid’s centre
of mass (indicated by red circles). Stereoscopic particle image velocimetry measurements
of the in-plane velocity (displayed as arrows) show that the maximum velocities are reached
when the surface elevation is lowest. The excitation frequency is close to the first system’s
natural frequency resonance,≠/!n = 0.917 (harmonic resonance). The excitation amplitude is
f = a≠2, with a = ax /w = 0.64 (ax is the peak amplitude of the horizontal tank displacement).

Driven oscillations

When a resonator like the sloshing system of figures 1.3 and 1.4 is externally driven at a
frequency≠, the large-time response is generally characterized by a finite amplitude, set by
the saturation resulting from the system’s dissipation and nonlinear mechanisms, and by an
oscillation frequency coinciding with that of the external forcing. Indeed, the PSD function
shows a main peak centred around !/≠ º 1 and a series of super-harmonics triggered by
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nonlinear effects. The PSD function of figure 1.3(f) is reminiscent of that typical of oscillators
(see figure 1.3(d)), although here, oscillations are not self-sustained but are rather maintained
by the external driving.

1/2           1             3/2           2         
P

S
D

100

10-1

10-2

10-3

10-4

10-5
  

10-6

10-7

ω/Ω

sub-harmonic

harmonic

(b)

parametrically driven

super-harmonic

(a)

t=0, 2T, T0 t=T/2, T0 /4 t=T, T0 /2 t=3T/2, 3T0 /4

fcos(2#t/T)

Figure 1.5 – (a) A vertically vibrating liquid layer that spontaneously excites sub-harmonic
surface standing waves (Benjamin and Ursell, 1954; Faraday, 1831; Kumar and Tuckerman,
1994a) (modified figure from Sampara and Gilet (2016)). (b) Power spectral density (PSD)
computed numerically by simulating the response of a liquid layer in a cylindrical container
vertically excited at a frequency≠ (Bongarzone et al., 2021b). The PSD shows a dominant peak
at !/≠= 1/2, thus indicating a sub-harmonic parametric response.

Parametric oscillations

Parametric resonators are systems where an oscillatory system’s response can be induced by
time-modulating one or more internal parameters of the system at some frequencies that
possibly differ from its natural frequencies, ≠ 6= !n . Such a modulation can be achieved
in several ways; a simple archetypal example is given by the parametric pendulum, whose
pivot position is vertically modulated by imposing an external forcing. This translates into a
modulation of the gravity acceleration acting on the system, which can then be parametrically
and resonantly pumped by frequency modulations with !n/≠º p/2 (p 2 N ) (Kovacic et al.,
2018a). The strongest amplification is typically achieved for !n/≠º 1/2, and it is referred to as
sub-harmonic resonance. This parametric amplification also occurs in continuous media. For
instance, the flat interface of a liquid contained in a vertically vibrating tank (see figure 1.5(a))
may be parametrically excited, leading to the generation of standing waves oscillating at a
frequency (see figure 1.5(b)) that is half that of the external driving, leading to the so-called
Faraday instability (Benjamin and Ursell, 1954; Faraday, 1831; Kuhlmann and Rath, 1998;
Kumar and Tuckerman, 1994a).

Since the two examples of parametric oscillations mentioned here both involve the use of an
external forcing, the distinction between driven and parametric resonators may still appear
somewhat vague at this stage. Nevertheless, such a distinction becomes much clearer at the
level of the governing equations, particularly by noticing that, while the external forcing in
driven resonators appears as an additive extra term, in parametric resonators the forcing is
multiplicative and it appears in front of one or more state variables. Explicative archetypal
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1.1. Classification of oscillatory fluid systems via linear stability

examples of this differentiation are offered in the following by the Duffing equation (1.7)
(driven) and by the Mathieu equation (1.15).

Natural oscillations

If, for instance, the external driving is eventually turned off as in figure 1.6(b), the stable nature
of these resonators no more allows for sustained oscillations and the system enters a new
dynamical phase during which it relaxes towards the original equilibrium solution through
natural, free, oscillations. The amplitude response decreases with time and the system, initially
oscillating at the driving frequency≠, progressively adjusts its free oscillation frequency, which
will tend to the least damped natural frequency !n at large times. The relaxation dynamics is
ideally exponential with a decay rate possibly dictated by the damping rate of the least damped
natural mode, i.e. ª exp(æn t ) (æn < 0), although nonlinear phenomena, such as friction or
free surface and contact line capillary effects in confined liquid oscillations (see figure 1.6(a)
and Viola (2016)), becoming more and more important as the wave amplitude decreases, may
alter the features of the decaying behaviour. As a side comment, we note that, in order to
observe the natural evolution dynamics, the system does not necessarily have to start from
sustained oscillations; it could start from any initial condition, e.g. an impulsive perturbation.
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Figure 1.6 – (a) Nonlinear friction in sloshing dynamics is induced by one or more layers of
foam placed at the free surface (Zhang et al., 2019). As a consequence, the sloshing wave does
not relax exponentially (Sauret et al., 2015; Viola et al., 2016c). (b) Relaxation dynamics of a
harmonically driven sloshing wave following the suppression of the external driving at time
t = 0 (modified figure from Bäuerlein and Avila (2021)). In the. absence of nonlinear effects,
the relaxation dynamics is exponential, with a decay rate defined by the damping coefficient
æn of the previously excited natural mode. However, nonlinear friction acting at the contact
line may affect the relaxation dynamics provoking the motion arrest at finite times (Cocciaro
et al., 1993; Dollet et al., 2020; Viola et al., 2018) (see purple line in connection with panel (a)).
In both scenarios, the system, initially oscillating non-parametrically at the driving frequency
≠, progressively adjusts its oscillation frequency, which equals the natural frequency !n at
large times.

9



Introduction

1.2 Nonlinear effects and envelope equations

The physical problems investigated in this thesis are all attributable to the two categories
of oscillators and resonators, for which linear stability analysis provides relevant and useful
pieces of information about the initial evolution of a perturbation and the response to weak
external forcing. Nevertheless, even when non-normal effects are not important or completely
absent, as for most of the oscillators and resonators, the linear modal behaviour, used for
the classification outlined in the previous section, does not always fully capture the entire
dynamics of the perturbation.

In figure 1.3(g) and (h), we have already anticipated the role that nonlinearities play in the
cylinder flow and for resonantly driven sloshing waves in a rectangular container. For instance,
in an unstable cylinder flow, i.e. Re > Recr , the perturbation, initially oscillating at the natural
frequency !n , grows exponentially until the amplitude becomes large enough and nonlinear
mechanisms kick in. The oscillation frequency progressively increases, while the perturbation
amplitude saturates and the system eventually settles into a limit cycle, with self-sustained
oscillations at!=!LC 6=!n and finite amplitude. The amplitude saturation and the frequency
modulation are direct consequences of nonlinear mechanisms. Similar saturation and fre-
quency detuning effects, as well as other nonlinear effects, happen in sloshing and Faraday
waves, although the wave motion needs to be triggered and permanently sustained by external
driving. We have also shown, in figure 1.6, how some kind of nonlinear effects (sub-linear
(Viola, 2016)), such as capillary-induced friction in confined surface waves, can nonlinearly
damp the oscillations and, becoming particularly effective at small amplitudes, eventually
induce the arrest of the interface motion at finite times.

Generally speaking, a high-fidelity description and prediction of nonlinear phenomena
observed in real-life experiments are only achievable by solving the fully nonlinear governing
equations, which often do not admit closed-form analytical solutions. Accurate approximated
solutions can be computed via direct numerical simulations (DNS), which are, however, com-
putationally costly. Hence, the formalization of reduced models involving lower degrees-of-
freedom, such as envelope (also called amplitude) equations, derived by means of asymptotic
theories and englobing the relevant nonlinear flow features, constitutes an attractive alterna-
tive to DNS whenever applicable, e.g. when nonlinear effects are only weak. With regards to
oscillators and resonators, nonlinearities are generally small close to bifurcation points and
for small external forcing amplitudes.

For example, Provansal et al. (1987) and Dušek et al. (1994) observed that, in the case of the
first instability in the cylinder wake, the complex amplitude of the perturbation, A = |A|e i©,
close to the bifurcation (Re º Recr ) is governed by the Stuart-Landau equation (Stuart, 1960),

d A
d t

=∏A+∫|A|2 A , (1.4)

which describes the saturation mechanism in this super-critical Hopf bifurcations (Kuznetsov
et al., 1998) (see figure 1.2(b)) as the steady base flow passes from stable to unstable, providing
an estimation of the time evolution of the instability amplitude.
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1.2. Nonlinear effects and envelope equations

The complex coefficients ∏=∏r + i∏i and ∫= ∫r + i∫i , originally determined experimentally,
have been computed in a rigorous manner by Sipp and Lebedev (2007) using weakly nonlinear
analysis for the Navier-Stokes equations in the neighbourhood of the critical Reynolds number,
Recr (Stuart, 1958). They showed that the Stuart-Landau equation naturally appears as a
compatibility condition in the asymptotic scheme. In the same spirit, a weakly nonlinear
mode expansion for different flows (precessing vortex breakdown, wakes of disks and spheres)
has been carried out by Meliga et al. (2009a, 2012a).

At the core of these perturbative analyses is the multiple-scales method (Cole, 1968), which
has been widely used to obtain amplitude equations describing the slow dynamics of the
large-scale modulation of a basic structure predetermined by a-priori calculations, e.g. from
global or local linear stability (Newell and Whitehead, 1969; Segel, 1969). The method lies
within the family of asymptotic techniques and it assumes, after non-dimensionalization
of the governing equations, the existence of a small non-dimensional parameter ≤ø 1 in
the underlying problem and that can be taken, for instance, as a measure of the departure
from criticality in terms of control parameters, e.g. Re°1 °Re°1

cr ª ≤, or as the amplitude of a
small external forcing, f ª ≤, if any. It is then meaningful to seek for a solution q as a formal
power series in the small parameter, i.e. q = q0 + ≤q1 + ≤2q2 + . . .+ ≤k qk +O(≤k+1), where in
most cases, retaining only the first few terms of the series is sufficient to describe the small ≤
behaviour of the actual solution. In fact, the multiple scales approach consists in postulating
that the system’s functions vary on two (or more) temporal and/or spatial scales, so that
some functions, e.g. the perturbation amplitude, depend on time t and space x, only through
the product Ti = ≤i t and X j = ≤ j x, e.g. A

°
≤t , . . . ,≤i t ,≤x, . . . ,≤ j x

¢
= A

°
T1, . . . ,Ti ,X1, . . . ,X j

¢
, with

i , j < n. Requiring, through the imposition of a solvability condition, the suppression of
unphysical secular terms in the standard expansion eventually fixes the ensuing arbitrariness
by providing a governing equation for A.

As a more general example, the combined introduction of slow time and spatial scales
is the starting point in the derivation of the famous nonlinear Schrödinger equation (NLS)
(Ablowitz et al., 1991; Benjamin and Feir, 1967; Stoker, 1992; Whitham, 1974; Zakharov, 1972),
as an envelope equation for gravity waves that describes the evolution of slowly modulated
wavetrains:

@A
@t

°∞@
2 A
@x2 = ∫|A|2 A, (1.5)

(written in a non-dimensional form and in a coordinate system moving with the group velocity)
with coefficients ∞=°i!n/8k2

n , ∫=°i!nk2
n/2 and where kn represents the wave number of

the carrier wave, whereas !n =
p

g kn (g : gravity acceleration) is the linear dispersion relation
of gravity waves in the deep water regime (Lamb, 1993). For instance, an important issue in
naval engineering is the phenomenon of rogue waves, extreme events occurring in systems
characterized by the presence of many waves (Onorato et al., 2001); most of the models which
have been developed so far have a weakly nonlinear nature and are based on the NLS. See
Onorato et al. (2013) for a series of representative examples, where the main physical mecha-
nisms at the origin of rogue waves are elucidated.

The NLS appears in different physical contexts, including plasma physics and nonlinear
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optics, since it simply describes the interaction of dispersion and weak nonlinearity. Equa-
tion (1.5) is a special case of an amplitude equation for a conservative system. In the more
common case where dissipation cannot be neglected, the usual amplitude equation is the
so-called complex Ginzburg-Landau equation (Aranson and Kramer, 2002; Godrèche and
Manneville, 1998),

@A
@t

°∞@
2 A
@x2 =∏A+∫|A|2 A, (1.6)

where coefficients ∞, ∏ and ∫ are not purely imaginary as in (1.5). To give a few examples,
equation (1.6) has been used to describe the Benjamin-Feir phase instabilities, as well as other
symmetry-breaking secondary instabilities of cellular flows, as the Eckhaus and the “zigzag"
instabilities (Godrèche and Manneville, 1998).

1.2.1 Weakly nonlinear analysis via multiple time-scales method

A multiple scales expansion in space is commonly employed in WKBJ approaches (Bender
et al., 1999; Gaster et al., 1985; Huerre and Rossi, 1998; Nayfeh, 2008a) for weakly nonparallel
flows, in which the steady base or mean flow varies slowly on a long length scale when com-
pared to the shorter instability waves (Charru, 2011; Chomaz, 2005; Schmid et al., 2002).

However, in the problems tackled in this thesis, the effect of the geometry and confinement
on the flow is such that the instabilities and the base flow have no separated length scales:
the dynamics of the perturbation result from the interactions of global modes extended over
the whole physical domain and whose spatial structures valid at any spatial location can be
computed by means of linear stability calculations. As a result, no slow spatial scales need to
be introduced, and one only needs to account for slow time modulations of the perturbation
amplitudes, which are governed by nonlinear ODEs, rather than PDEs as in the case of the
nonlinear Schrödinger equation (1.5) or the Ginzburg-Landau equation (1.6).

Since the weakly nonlinear analysis via multiple time-scales method constitutes a funda-
mental theoretical building block of the present work, in the following we provide a quick
overview of the method, using as examples a series of archetypal single-degrees-of-freedom
systems.

Asymptotic solution of the forced Duffing equation

Let us first consider the Duffing equation (Duffing, 1918), a popular single-degrees-of-freedom
system often used to model the nonlinear response of externally driven resonators,

ẍ +2æn ẋ +!2
n x +Øx3 = f cos≠t , (1.7)

where æn is the damping coefficient, Ø is the nonlinear coefficient, while f and ≠ are the
driving amplitude and frequency. In the following, we only consider the limit of small forcing
amplitudes, f = ≤ f̂ , weak nonlinearities, Ø= ≤Ø̂ and small damping, æn = ≤æ̂n , with the auxil-
iary parameters f̂ , Ø̂ and æ̂n assumed of order ª O(1). Most generally speaking, ≤ represents

12



1.2. Nonlinear effects and envelope equations

a small parameter, i.e. 0 < ≤ø 1, which does not necessarily need to be explicitly defined,
but it can rather be considered as an implicit separation of the different orders of magnitude
at play. A straightforward perturbation-series approach to the problem proceeds by writing
x (t ) = x0 (t )+ ≤x1 (t )+O

°
≤2¢ and substituting this into (1.7). Matching powers of ≤ gives the

≤0-order equation
ẍ0 +!2

n x0 = 0 °! x0 = Ae i!n t + c.c., (1.8)

with c.c. denoting the complex conjugate, and ≤-order problem

ẍ1 +!2
n x1 =°2æ̂n ẋ0 ° Ø̂x3

0 + f̂ cos≠t = f̂
2

e i≠t °2æ̂n iAe i!n t ° Ø̂A3e i3!n t °3Ø̂|A|2 Ae i!n t + c.c.,
(1.9)

x1 = A3 Ø̂

8!2
n

e i3!n t °
√

|A|2 3Ø̂

4!2
n
+ i

æ̂n

2!2
n

!

Ae i!n t ° f̂

≠2 °!2
n

e i≠t + (1.10)

+
"

i|A|2 3Ø̂
2!n

° æ̂n

!n

#

A t e i!n t

| {z }
/t

+c.c.,

where the second-order homogeneous solution in (1.10) has been omitted for brevity.
The most general solution of (1.10) is unbounded due to the linear terms in t (see framed

terms in (1.10)), which are classically referred to as secular terms. In particular, for t = O
°
≤°1¢,

these terms become O(1) and have the same order of magnitude as the leading-order term, x0.
Because the asymptotic terms have become disordered, the series is no longer an asymptotic
expansion of the solution, i.e. the straightforward perturbation expansion breaks down. Such
a linear growth is obviously a spurious effect since it is clear that (1.7) conserves energy. This
pathological behaviour is resolved by resorting to the multiple scales framework (Godrèche
and Manneville, 1998; Nayfeh, 2008a). Let us introduce explicitly the slow time scale T = ≤t ,
which leads to

d
d t

= @

@t
+≤ @

@T
+O

°
≤2¢ d 2

d t 2 = @2

@t 2 +2≤
@2

@t@T
+≤2 @2

@T 2 +O
°
≤3¢ , (1.11)

as if t and T were independent variable. With these definitions, the ≤0-order problem remains
unchanged and has solution x0 = A (T )e i!n t + c.c. The only, but fundamental, difference,
consists in assuming that amplitude A (T ) is now a function of the slow time scale, it represents
the slow wave-amplitude modulation of the fast wave oscillations, and it is still undetermined
at this stage of the asymptotic expansion. The ≤-order problem is now forced by the following
terms:

@2x1

@t 2 +!2
n x1 =°2

@2x0

@t@T
°2æ̂n

@x0

@t
° Ø̂x3

0 + f̂ cos≠t (1.12)

=
√

°2i!n
@A
@T

°2iæ̂n!n A°3Ø̂|A|2 A+ f̂
2

e i§̂T

!

e i!n t + c.c.+NRT,
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where NRT stands for non-resonating terms, meaning terms that are not secular and that are
not necessarily relevant for further analysis (unless one aims at pursuing the expansion to the
next order). In (1.12), we have already considered the most dangerous scenario, in which the
system is driven close to the natural frequency (resonant condition). This has been done by
introducing a small detuning parameter §, i.e. ≠=!n +§ with §= ≤§̂ (and §̂ª O(1), such
that≠t =!n t + §̂T in (1.12). The arbitrariness introduced by A (T ) is fixed by requiring that
secular terms are not present in the solution (1.10), which implies cancelling out the harmonic
forcing terms in !n appearing on the right-hand side of (1.12) or (1.9). Such a solvability
condition prescribes the amplitude A (T ) to obey the following ordinary differential equations

@A
@T

= 1
≤

d A
d t

= ∏̂A+ ∫̂|A|2 A+µ f̂
reintroducing the physical°°°°°°°°°°°°°°°°°!

time t by eliminating ≤

d A
d t

=∏A+∫|A|2 A+µ f , (1.13)

with coefficients ∏ = ≤∏̂ = ° (æn + i (≠°!n)), ∫ = ≤∫̂ = i3Ø/2!n and µ = °i/4!n and where
the transformation A ! Ae i§̂T has been used so as to make the amplitude equation au-
tonomous. Note that (1.13) takes the form of a Stuart-Landau equation supplemented with
an external driving term. Hence, the envelope equation (1.13) provides a governing equation
for the perturbation’s amplitude and the leading order solution, x0 = A (t )e i(!n+§t ) + c.c. =
2|A (t ) |cos(≠t +© (t )), represents a good approximation of (1.7) valid for small forcing in the
vicinity of the resonance and for weak nonlinearities.

The close-to-resonant asymptotic approximation of the forced Duffing equation has been
widely used in the modelling of resonant sloshing waves, e.g, in rectangular container (Bäuer-
lein and Avila, 2021; Ockendon and Ockendon, 2001, 1973), and it has been shown capable
of describing the finite wave amplitude saturation through hardening- or softening-like be-
haviours. By properly fitting coefficients æn and Ø from experimental measurements by
Bäuerlein and Avila (2021) (see also figure 1.4), the latter can be compared with the predictions
from approximation (1.13). This is outlined in figure 1.7(a) in terms of non-dimensional steady-
state wave amplitude (large-time dynamics) for different non-dimensional forcing amplitude.
These steady-state solutions can be obtained, e.g., by time-integrating (1.13) for large time
intervals. Alternatively, one can directly seek stationary solutions by setting d A/d t = 0 and
then study their stability to small perturbations in the form A = A0 +≤A1e(sr +isi )t , so that the
sign of sr establishes whether the steady solution A0 is stable or unstable.

Mathieu’s equation with nonlinearities

With regard to this thesis, another relevant single-degree-of-freedom system, used to model the
response of parametrically driven resonators, is the parametric pendulum, already introduced
in the previous section. At the linear order, this simple system is described by the Mathieu
equation (Mathieu, 1868)

ẍ +2æn ẋ +!2
n x = x!2≤ f cos≠t . (1.14)

The parametrically unstable regions in the forcing parameter space
°
≠, f

¢
can be computed

by means of the linear Floquet stability theory performed around one of the two possible
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1.2. Nonlinear effects and envelope equations
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Figure 1.7 – (a) Asymptotic approximation (1.13) is compared with sloshing experiments in a
rectangular container by (Bäuerlein and Avila, 2021). The comparison is outlined in terms of
the non-dimensional steady-state wave amplitude (large-time dynamics) of the wave’s center
of mass for different non-dimensional forcing amplitude, a. Those amplitudes are re-scaled
by the container’s width, w (see figure 1.4). The forcing acceleration is f = c1a≠2, with≠ the
driving frequency and c1 = 0.3183 a characteristic system parameter. Coefficients æn and ∫

are set to 8.4£10°3 and °59.2, respectively. (b) Asymptotic approximation (1.16) is compared
with experiments by (Henderson and Miles, 1990) for single-mode Faraday waves in a small
circular cylinder. The grey-shaded area represents the sub-harmonically unstable region in
the (≠, a) forcing parameter space (right-y axis), whereas lines correspond to the nonlinear
amplitude saturation (left-y axis). Amplitudes are re-scaled by the container’s radius R. The
forcing acceleration is f = c1a≠2, with c1 = 1.0291. Coefficients: æn = 0.0157 and Ø=°6. (c)
Asymptotic approximation (1.18) is compared with the measurements by (Dollet et al., 2020)
of the relaxation dynamics of liquid oscillations in a U-shaped tube. The amplitude is rescaled
by the initial non-dimensional elevation, 2h0/l with l the overall tube length. Coefficients:
æn = 0.06 and ¢= 0.0047. In (a,c), !n = 1, while !n = 1.9641 in (b). In (a,b,c) lines indicate
the asymptotic approximations, whereas markers denote experiments. In (a,b), dashed lines
designate unstable steady-state solutions of (1.13) and (1.16). In (a,b,c), parameters æn , Ø and
¢ are fitted in order to match the experiments.
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equilibrium solutions (Kovacic et al., 2018a). Within such regions the equilibrium solution is
unstable, and the perturbation grows exponentially. The most relevant parametric resonance
is the sub-harmonic one, as it is the one that requires the lowest driving amplitude to be excited.
Yet, equation (1.15) does not tell us anything about nonlinear mechanisms. Nonlinearities
are partially reintroduced by accounting for a cubic term (sin x º x °x3/6+ . . .) (Kovacic et al.,
2018a),

ẍ +2æn ẋ +!2
n x +Øx3 = x!2

n f cos≠t . (1.15)

Without going into the details (the derivation is similar to that for the Duffing equation), an
asymptotic approximation of the fundamental sub-harmonic resonance can be obtained
from (1.15) via multiple time-scales method in the limit of small forcing amplitude, f = ≤ f̂ ,
weak damping, æn = ≤æ̂n , weak nonlinearities, Ø = ≤Ø̂, and assuming a driving frequency
to be ≠ = 2!n +§ = 2!n + ≤§̂, i.e. in the neighbourhood of the sub-harmonic resonance.
Note that the introduced auxiliary parameter f̂ , æ̂n , Ø̂ and §̂ are all of order ª O(1). The
asymptotic procedure and the imposition of a solvability condition lead to the following
amplitude equation

d A
d t

=∏A+∫|A|2 A+µA f , (1.16)

with ∏=° (æn + i (≠°2!n)/2), ∫= i3Ø/2!n and µ=°i/4!n .
The very same amplitude equation, originally derived by symmetry arguments, has been

widely used for modelling the wave amplitude saturation of sub-harmonically unstable Fara-
day standing waves in lab-scale containers (see Douady (1990) and Henderson and Miles
(1990) among many others). After fitting coefficients æn and Ø from experiments by Hender-
son and Miles (1990) of single-global-mode sub-harmonic Faraday waves in a small circular
cylinder, approximation (1.16) is compared with those measurements in figure 1.7(b). The
comparison is outlined in terms of the stability region associated with the sub-harmonic
parametric resonance (grey-shaded area) and in terms of non-dimensional steady-state wave
amplitude (large-time dynamics) at a fixed non-dimensional forcing amplitude.

Solid friction in free pendulum dynamics

The Duffing equation and the nonlinear Mathieu equation are examples of oscillatory dynam-
ics which experience nonlinear effects for increasing amplitudes. Those effects are responsible
for the saturation mechanism of the perturbation amplitude at large times. On the contrary,
here we propose an example of nonlinearity becoming important for decreasing amplitudes
and that is induced by dry friction in a simple pendulum initially perturbed out of its stable
equilibrium position (Butikov, 2015):

ẍ +2æn ẋ +!2
n x +¢sgnx = 0, x (0) = xi , ẋ (0) = ẋi (= 0) . (1.17)

Assuming again small linear damping æn = ≤æ̂n and small friction coefficient ¢= ≤¢̂, with æ̂n

and ¢̂ both of order ª O(1), an asymptotic approximation can be obtained in the form of an
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1.2. Nonlinear effects and envelope equations

amplitude equation following Viola et al. (2018) and Dollet et al. (2020)

d A
d t

=∏A+¬A/|A| , (1.18)

with ∏=°æn and ¬=°¢/º!n .
Turning (1.18) into polar coordinates, A = |A|e i©, allows one to readily obtain an analytical

solution for the envelope module of x0 = 2|A|cos(!n t +©),

|A (t ) | =
∑
° ¢

ºæn!n
+

µ
x0

2
+ ¢

ºæn!n

∂
e°æn t

∏
. (1.19)

Solution (1.19) suggests that the nonlinear term in (1.18) is such that there exist a finite time,
t = t§, for which the the motion arrests irreversibly as |A (t = t§) | becomes zero,

t§ = 1
æn

log
µ
ºæn!n x0 +2¢

2¢

∂
, (1.20)

a feature that has already been described in figure 1.6. This simple pendulum analogy can
be used to model the nonlinear relaxation dynamics of small amplitude liquid oscillations
induced by contact angle hysteresis (Dollet et al., 2020; Viola et al., 2018). In figure 1.7(c),
after fitting coefficients æn and ¬, the asymptotic prediction (1.19) is compared with the
measurements by (Dollet et al., 2020) of the relaxation dynamics of liquid oscillations in a
U-shaped tube and it is indeed shown to be in fairly good agreement.

1.2.2 Generalization to large systems: the emergence of secular terms and the
imposition of a solvability condition via Fredholm alternative

1

In the previous section, by considering a few archetypal one-degree-of-freedom systems, we
have discussed the asymptotic breakdown provoked by the emergence of secular terms in the
straightforward weakly nonlinear expansion. Specifically, we have shown how the employment
of the multiple time-scales method, by assuming a slow time amplitude modulation of the
perturbation, naturally leads to the imposition of a solvability condition that eliminates
secular terms and prescribes the perturbation amplitude to obey a given normal form, i.e. an
amplitude equation.

In the following, we briefly discuss how the concepts of the emergence of secular terms and
the imposition of a solvability condition are generalizable to large systems.

To this end, let us seek an asymptotic solution of, e.g., the Navier-Stokes equation (1.1) also
subjected to an external and time-dependent body or boundary force, f (x, t ),

q (x, t ) = q0 (x)+≤q1 (x, t )+≤2q2 (x, t )+ . . .+≤k qk +O
≥
≤k+1

¥
, ||f (x, t ) ||ª ≤k , (1.21)

1Part of these notes was kindly provided by Yves-Marie Ducimetière in personal communication.
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where q0 represents an equilibrium solution (or steady base flow) of (1.1) and where the
amplitude of the external forcing ||f (x, t ) || is assumed small of order ≤k . With the aim of
giving a pedagogical example, in the following let us consider k = 3. After linearization of
the governing equations around q0, the ≤-order problem generally takes the form of a linear
homogeneous problem, such as

@q1

@t
=L q1. (1.22)

As already discussed at the beginning of this introduction, one can then seek eigensolutions
of (1.22) in the standard normal form

q1 (x, t ) = A (T ) q̂1n (x)e∏n t + c.c., T = ≤2t , (1.23)

where q̂1n is the nth eigenmode and ∏n is the corresponding eigenvalue, solution of the
generalized eigenvalue problem

∏n q̂1n =L q̂1n . (1.24)

The formalism of the multiple scales analysis requires the eigenvalue ∏n = æn + i!n to be
marginally stable (Godrèche and Manneville, 1998). How to relax this constraint to cases
where the growth or decay rate æn is much smaller than !n is discussed, e.g., in Meliga et al.
(2009a). However, for the sake of simplicity, we assume hereinafter the marginal stability
condition, i.e. æn = 0 and ∏n = i!n . Note that, in the spirit of the multiple time-scales
method, the perturbation amplitude A (T ) has been assumed to depend on the slow time
scale T , as defined in (1.23); the use of the partial derivative symbol in (1.22) anticipated the
decomposition of the physical time into two different time scales.

Before moving forward, let us also introduce an inner product, e.g. the Hermitian scalar
product < â, b̂ >= âH b̂, with â and b̂ two generic vectors and the superscript H denoting the
Hermitian transpose. With respect to the considered scalar product, we can define an adjoint
operator of L , namely L †,

∏†
m q̂†

1m =L †q̂†
1m , (1.25)

such that q̂†
1m and ∏†

m are, respectively, the mth adjoint eigenmode and adjoint eigenvalue.
Particularly, the direct, q̂1n and adjoint, q̂†

1m , eigenmodes form a bi-orthogonal basis, meaning
that < q̂†

1m , q̂1n >= ±nm , with ±nm the Kronecker delta. Hence, for n = m, < q̂†
1n , q̂1n >= 1 and

∏†
m =∏n (=°i!n in the case here considered).
The problem at order ≤3 will typically take the form of an inhomogeneous linear problem,

where the right-hand side contains forcing terms produced by the weakly nonlinear inter-
actions of the previous order solutions and by the external body or boundary forces, e.g. a
time-harmonic f (x, t ) = f f̂ (x)e i≠t + c.c., whose amplitude f has been assumed to be small of
order ≤3 and whose oscillation frequency is close to the natural frequency≠º!n ,

@q3

@t
°L qk =°@q1

@T
+N

°
q0,q1,q2, . . .

¢
+ f (x, t ) =°@q1

@T
+F

°
A, f , . . .

¢
. (1.26)

The forcing term F
°

A, f , . . .
¢

is generally a function of the perturbation amplitude, forcing
amplitude, etc. We also notice that the right-hand side contains a forcing term associated with
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1.2. Nonlinear effects and envelope equations

the slow time derivative of the leading order perturbation q1. Let us suppose now a Fourier
decomposition of the time-dependent forcing term F

°
A, f , . . .

¢
into a component gathering

all the resonant terms oscillating at the natural frequency !n , FRT
°

A, f , . . .
¢

and a second
component gathering all the non-resonant terms, FNRT

°
A, f , . . .

¢
, which are not relevant for

the further analysis and will be therefore simply ignored, so that (1.26) reduces to

@qk

@t
=L qk +

µ
°@q1

@T
+FRT

°
A, f , . . .

¢∂
, FRT = F̂

°
A, f , . . .

¢
e i!n t + c.c., (1.27)

subjected to a certain initial condition, e.g. qk = 0 at t = 0.
In the most general form, the response of the system in time can be written by using the

exponential matrix eL t , such that

q3 (x, t ) = eL t
Zt

0
e°L s

∑µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂

e i!n s
∏

ds = (1.28)

=
µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂

eL s
Zt

0
e°L se i!n s ds + c.c.,

The exponential matrix can be decomposed as

eL s =QeDsQ°1, (1.29)

where the matrix Q contains the eigenmodes of L , whereas the diagonal matrix D contains
the corresponding eigenvalues of L , i.e. D = diag

≥
i!n ,°i!n ,∏l ,∏l , . . .

¥
(with l 6= n). Hence,

eL t e°L se i!n s = diag
≥
e i!n t ,e°i!n (t°2s),e∏l (t°s)+i!n s ,e∏l (t°s)+i!n s , . . .

¥
, (1.30)

Using the decomposition (1.29), one can express

Zt

0
eL t e°L se i!n s ds = (1.31)

=Q

2

666666664

te i!n t 0 0 0 . . .
0 1

i2!n

°
e i!n t °e°i!n t ¢ 0 0 . . .

0 0 1
i!n°∏l

°
e i!n t °e∏l t ¢ 0 . . .

0 0 0 1
i!n°∏l

≥
e i!n t °e∏l t

¥
. . .

...
...

...
...

. . .

3

777777775

Q°1,

so that,

q3 =
µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂Zt

0
eL t e°L se i!n s ds + c.c. = (1.32)

=

0

@q̂1n

< q̂†
1n ,

≥
° @A
@T q̂1n +F̂RT

°
A, f , . . .

¢¥
>

< q̂†
1n , q̂1n >

e i!n t t + c.c.

1

A

| {z }
secular terms: linearly growing in time / t

+oscillating, (1.33)
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in which we have used the fact that Q =
°
q̂1n , q̂1m , . . .

¢T and, therefore,

Q°1
µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂

=

2

66664

<q̂†
1n ,

°
° @A
@T q̂1n+F̂RT(A, f ,...)

¢
>

<q̂†
1n ,q̂1n>

<q̂†
1m ,

°
° @A
@T q̂1n+F̂RT(A, f ,...)

¢
>

<q̂†
1m ,q̂1m>

...

3

77775
, (1.34)

since

QQ°1
µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂

=
X

n
q̂1n

< q̂†
1n ,

≥
° @A
@T q̂1n +F̂RT

°
A, f , . . .

¢¥
>

< q̂†
1n , q̂1n >

= (1.35)

=
µ
°@A
@T

q̂1n +F̂RT
°

A, f , . . .
¢∂

,

according to the bi-orthogonality property of direct and adjoint modes.
Lastly, from (1.32), it appears clear that avoiding an algebraic growth implies requiring that

< q̂†
1n ,

≥
° @A
@T q̂1n +F̂RT

°
A, f , . . .

¢¥
>

< q̂†
1n , q̂1n >

= 0. (1.36)

which is equivalent to asking that the forcing term must be orthogonal to the cokernel of
L , or, alternatively said, to the kernel of the adjoint operator L †, as stated by the Fredholm
alternative (Olver, 2014a).

The imposition of a solvability condition through the Fredholm alternative eventually
fixes the arbitrariness introduced by the perturbation amplitude by prescribing a governing
equation for A (T ), which constitutes our final amplitude equation:

@A
@T

= 1
≤2

d A
d t

=
< q̂†

1n ,F̂RT
°

A, f , . . .
¢
>

< q̂†
1n , q̂1n >

=) d A
d t

= F
°

A, f , . . .
¢

(1.37)

As a side comment, we note that in our starting point (1.22), we have implicitly assumed that
the mass matrix M coincides with the identity matrix I . In general, M 6=I and M enters in
the definition of the inner product, < â,M b̂ >= âH °

M b̂
¢
.

Lastly, it appears now clearer as the single-degree-of-freedom systems previously examined
constitutes the trivial limit of equation (1.36). Indeed, by taking q̂1n = q̂†

1n = 1, equation (1.36)
simply means requiring that the resonant forcing terms are zero, i.e. @A

@T °F̂RT
°

A, f , . . .
¢
= 0.

1.2.3 In this thesis: derivation of normal form coefficients from first principles

In this section, we have introduced the multiple time-scale method, and we have illustrated,
using a few single-degree-of-freedom archetypal examples, how to derive envelope equations
for these systems. A generalization of the method to large systems has been then briefly
discussed. Throughout this thesis, envelope equations (and their coefficients) for a series
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In this Thesis: Linear Stability and Weakly Nonlinear Effects

Figure 1.8 – Structure of the present document. This thesis is divided into four main parts, each
classified according to the type of the underlying oscillatory system’s response: self-sustained,
externally driven, externally driven, but parametrically and natural. Each chapter is devoted
to the theoretical modelling and further understanding of these complex nonlinear fluid
dynamics using the tools of linear stability and weakly nonlinear theories.

of complex fluidic oscillators and resonators will be formally derived (and computed) from
first principles via weakly nonlinear multiple time-scales analyses of the full hydrodynamic
systems. It will be shown that the weakly nonlinear dynamics of these oscillatory flows,
ranging from self-sustained impinging-jets oscillators to driven sloshing-like resonator, is
well described by slightly different and enriched versions of the envelope equations just
introduced, i.e. (1.4), (1.13), (1.16) and (1.18), hence making possible the identification of the
few degrees-of-freedom that are actually relevant to the overall dynamics.

1.3 Forewords

Despite the main focus on fundamental physics questions, the problems tackled in this thesis
are directly relevant to several industrial applications. While in many engineering problems,
as those of figure 1.1(b,d,f), oscillatory instabilities and resonances are seen as endangering
features to be avoided at all costs, resulting in entire parametric regions to be avoided or in the
need for efficient control and mitigation strategies, the examples discussed in this document,
like many others, illustrate a different view: self-sustained or driven oscillations can be indeed
harnessed for the design of a wide variety of engineering devices, ranging from microfluidic
circuitry (hydrodynamic converters or switching devices), orbital-shaken bioreactors for cell
cultivation and drug production to liquid-based template for the assembly of microscale
materials. A proper predictive understanding and modelling of the hydrodynamic at stake is
therefore essential in the design of all these processes.

With the support of existing and home-made experimental observations and measurements
(see figure 1.9), the present research aims precisely at modelling and providing comprehensive
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theoretical frameworks capable of rationalising some of these complex nonlinear oscillatory
dynamics, most of which have not been fully elucidated yet.

As amplifier-like systems have not been studied in this thesis, let us recall the distinction
made between oscillators and resonators on the basis of the nature of their oscillatory re-
sponses:

• Oscillators:

– Self-sustained
oscillations

• Resonators:

– Driven oscillations

– Parametric oscillations

– Natural oscillations

Keeping in mind the distinction made above, the present document is organised as in
figure 1.8 and figure 1.9. The thesis contains published or submitted material carried out in
collaboration with other experienced researchers and my supervisor, to which I fundamentally
contributed. If a Chapter contains published material where I do not appear as the first author,
my personal contribution is explicitly specified at the beginning of the Chapter.

In the following, a general outline of this thesis with a short description of each part is
provided, whereas more detailed and dedicated introductions are given at the beginning of
each part.

PART I Self-sustained oscillations

Chapters 2-3: Feedback-free fluidic oscillators based on impinging jets

In Chapter 2, we describe a microfluidic oscillator based on facing impinging jets and op-
erating in laminar flow conditions. Using appropriate cross-junction configurations with
two intersecting inlets and outlets, pulsatile liquid flows are experimentally generated at the
microscale from steady and equal inlet flow conditions and without moving parts or external
stimuli. Experiments and DNS are used to determine the region in the control parameter space
(device’s geometry and Reynolds number, Re) where self-sustained oscillations manifest.

To better elucidate the physical mechanism behind these oscillations, in Chapter 3, we
consider a simplified two-dimensional configuration. Advances in the understanding of such
a mechanism are made by performing linear global stability and sensitivity analysis, which
identify the Kelvin–Helmholtz instability, located in the jet’s interaction region, as the main
candidate for the origin of the oscillations observed in fluidic devices. Further interesting
nonlinear flow features, involving symmetry-breaking and subcritical transitions, are also
described by means of the weakly nonlinear theory.

22



1.3. Forewords

PART II Driven oscillations

Chapter 4-5-6: Harmonic and super-harmonic sloshing dynamics of orbital-shaken cylin-
drical reservoirs

The container motion along a planar circular trajectory at a constant angular velocity, i.e. cir-
cular shaking, is of interest in several industrial applications, e.g. for fermentation processes
or in the cultivation of stem cells, where good mixing and efficient gas exchange are the main
targets. Under this external forcing condition, the system always responds with a swirling wave
co-directed with the container’s direction of motion. Depending on the driving frequency and
amplitude, the frequency response can be either harmonic or super-harmonic. In Chapter 4,
existing experimental data are used to develop a weakly nonlinear model capable of describing
the fundamental harmonic and super-harmonic resonances in terms of flow patterns and
amplitude response.

From the perspective of hydrodynamic instability, the case of longitudinal container motions,
i.e. longitudinal shaking, appears more interesting. In this configuration, the system exhibits
a richer variety of wave regimes, such as planar, irregular and swirling motions. In Chapter 5,
we extend the weakly nonlinear model previously developed in order to study harmonic and
super-harmonic resonances under these forcing conditions. Our theoretical predictions are
confirmed by dedicated experiments.

Lastly, in Chapter 6, with the main focus on harmonic resonances, we provide an experimen-
tal characterisation of the free liquid surface response for a generic, elliptic periodic container
trajectory, i.e. elliptical shaking, so as to bridge the gap between the two diametrically op-
posed shaking conditions previously discussed. Experiments demonstrate for the first time
the counter-intuitive existence of stable swirling waves travelling in the opposite direction of
the container motion. These findings are then rationalized by using a slight variation of the
theoretical tools developed in Chapters 4 and 5.

PART III Parametric oscillations

Chapter 7-8: Sub-harmonic Faraday waves in circular cylinders and thin annuli

In this Part, we consider the problem of Faraday waves, undoubtedly the most famous paramet-
ric resonator system in fluids. In particular, we tackle two very different system configurations,
but which are linked to each other for the importance of the lateral wall and contact line
boundary conditions.

In Chapter 7, we focus on the problem of the coupling and interaction of parametric waves
and capillary meniscus waves, the latter being typically unwanted. Their suppression of the
latter can be achieved by imposing a contact line pinned at the container brim. However,
tunable meniscus waves are desired in some applications such as those of liquid-based biosen-
sors, where they can be controlled by adjusting the shape of the static meniscus by slightly
under/overfilling the vessel while keeping the contact line fixed at the brim. Considering this
contact line condition in cylindrical containers, we formalize a weakly nonlinear analysis
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which predicts the impact of static contact angle effects on the instability onset of viscous
sub-harmonic Faraday waves. The theory is validated with previous experiments and DNS.

In Chapter 8 we instead consider the case of Faraday waves in Hele-Shaw cells, for which
previous theoretical analyses typically rely on the Darcy approximation based on the parabolic
flow profile assumption in the narrow direction. However, Darcy’s model is known to be
inaccurate whenever inertia is not negligible, e.g. in unsteady flows. In this work, we propose
a revised gap-averaged linear model that accounts for inertial effects induced by the unsteady
terms in the Navier-Stokes equations. The theory also includes a linear law for the dynamic
contact angle that serves to reintroduce the contact line dissipation. The latter is indeed
seen to be a critical contribution to the overall dissipation of the system. The stability of the
system is studied by performing a Floquet analysis, whose predictions compare well with
previous experiments in rectangular Hele-Shaw cells and with new dedicated experiments in
thin annuli.

PART IV Natural oscillations

Chapter 9-10: Nonlinear relaxation dynamics of free surface oscillations due to contact
angle hysteresis

In Chapter 9, we present a physics-inspired mathematical model based on successive linear
eigenmode projections to solve the relaxation (natural dynamics) of small-amplitude and two-
dimensional viscous capillary-gravity waves with a phenomenological and experimentally-
inspired nonlinear contact line model accounting for Coulomb solid-like friction. We show
that each projection eventually induces a rapid loss of total energy in the liquid motion and
contributes to its nonlinear damping. This approach captures the transition from a contact
line stick-slip (or nearly stick-slip) motion to a pinned (or nearly pinned) configuration, as
well as the secondary fluid bulk motion following the arrest of the contact line, overlooked by
previous asymptotic analyses.

In Chapter 10, the projection model formalized in Chapter 9 is applied to the more realistic
case of liquid oscillation in a U-tube configuration. A comparison with existing experiments
proves the predictive power of this method, although a fitting parameter is still required owing
to the lack of information about the actual contact line dynamics.

See figure 1.9 for a visual illustration of the salient points pertaining to each Part.
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Figure 1.9 – Visual illustration of the salient points pertaining to the main Parts of this thesis.
The classification is based on the nature of the fluid oscillations. Sketches, representing the
various geometrical configurations considered, are given on the right, whereas a few examples
of homemade experimental outputs are given on the left. Theoretical models have been built
on the basis of these observations.
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