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Abstract

Orbital sloshing is a technique to gently mix a container’s liquid content and it is commonly

used in fermentation and cell cultivation processes. Besides the rich wave dynamics observed

at the interface, Bouvard et al. (2017) [1] unveiled the structure of the Lagrangian mean flow

hiding in the fluid bulk. The latter flow shows a global toroidal (azimuthal) rotation co-directed

with the wave and nontrivial poloidal vortices near the contact line. Rotating sloshing waves are

known to induce a net motion of fluid particles and hence a wave-averaged difference between

the Eulerian flow – viscous streaming – and the Lagrangian flow, that is commonly referred to

as Stokes drift. Nevertheless, discerning these two components in an experiment is challenging as

they scale similarly with the forcing amplitude and frequency. Their relative contributions remain

therefore unquantified, particularly for highly viscous fluids, for which prior analysis, based on

inviscid arguments, fails. In this work, we construct a truncated asymptotic approximation of

the problem, where the solution at each order is computed numerically to describe as accurately

as possible the contact line region, otherwise analytically untractable. The results of this weakly

nonlinear analysis in terms of first-order wave and second-order mean flow are then thoroughly

compared with the experiments by Bouvard et al. (2017) [1], showing a remarkable agreement

for off-resonance frequencies. When viscosity matters, our findings suggest that it is incorrect to

attribute the poloidal patterns solely to the Eulerian streaming flow and that viscous corrections

to the Stokes drift are equally important in the resulting mean Lagrangian flow.
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I. INTRODUCTION

Shaking a partially filled beaker is a standard technique in biological and chemical indus-

trial applications including fermentation processes and drug production as well as bacterial

and cellular cultures [2, 3]. Specifically, orbital shaking constitutes a simple and efficient

way to prevent sedimentation and ensure homogenisation in the concentration of dissolved

oxygen and nutrients. This can be achieved in both small and large-size bioreactors [4–6]

in a non-intrusive way, i.e. without any stirring, and possibly circumventing the problem

of oxygen supply from the beaker’s bottom, whose action is instead replaced by the gas

exchange taking place at the liquid interface [7–9]. The free surface deformations resulting

from the imposed oscillatory motion cause a laminar and low-shear flow environment which

is a requirement for optimal cellular growth [10]. For all these reasons, a strong interest in

the gas exchange and mixing processes taking place in these devices has emerged in the last

few decades [11–21].

At a pure hydrodynamic level, resonant sloshing dynamics in archetypical geometries such

as circular cylindrical containers has progressively gained understanding thanks to a series

of works which have combined experiments [1, 22–29] and theoretical modelling based on ei-

ther multimodal theories [30–37] or multiple scale weakly nonlinear analyses [38–40]. Those

studies have elucidated the rich dynamics observed in close-to-resonance operating condi-

tions and have provided powerful theoretical tools capable of predicting and explaining some

of the physical mechanisms behind complex nonlinear phenomena such as large-amplitude

super-harmonic resonances, symmetry-breaking conditions, counter-rotating waves, irregu-

lar and chaotic states, wave steepening and breaking conditions.

Notwithstanding the body of literature on the sloshing hydrodynamics, most of the above-

mentioned theoretical studies have employed potential theories [41–43] considering zero mean

vorticity and therefore overlooking the hidden mean bulk motion associated with the wave

dynamics and that it is key in the functioning principles of bioreactors or similar devices.

Far from resonance, the steady-state response of a cylindrical container to a horizontal

orbital motion at a constant angular frequency consists of a small-amplitude co-directed ro-

tating wave that comes along with a mean flow [44]. With their work focusing on the weakly

nonlinear limit, where the amplitude of the waves and that of the associated mean flow are

separated in their order of magnitude, Bouvard et al. (2017) (B17) [1] have given important
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insights into the mechanism that generates the mean flow induced by orbital shaking and its

dependence on the flow parameters, like the aspect ratio of the container, the fluid viscosity

or the forcing amplitude. Particularly, they have unveiled and characterized the structure

of the axisymmetric Lagrangian mean flow hidden in the fluid bulk, showing both a global

toroidal (or azimuthal in the θ-direction) rotation co-directed with the wave and nontrivial

poloidal vortices near the contact line (in the vertical rz-plane).

In this regard, it is important to distinguish between the Eulerian and Lagrangian mean

flow. The former is given by the time-averaged of the velocity field and it is commonly

referred to as streaming flow. On the other hand, the Lagrangian mean flow corresponds to

the flow that induces the total mean mass transport. The wave-averaged difference between

the Eulerian and Lagrangian flow is commonly referred to as Stokes drift [45–47],

u (r, z)︸ ︷︷ ︸
Lagrangian

= uE (r, z)︸ ︷︷ ︸
Eulerian

+ uS (r, z)︸ ︷︷ ︸
Stokes drift

. (1)

When considering inviscid or nearly inviscid waves, the literature offers the following

common interpretations for the two contributions appearing in this decomposition:

(i) fluid particles in oscillatory flows follow nearly circular closed paths and undergo slight

variations in wave magnitude along these trajectories [1]. These variations cause particles

to displace more in one direction, resulting in a small average drift over each wave period

[46]. Known as Stokes drift, this phenomenon originates purely from kinematics [45] and

enables azimuthal mass transport even without an Eulerian mean flow;

(ii) the Eulerian streaming flow has instead an intrinsically viscous origin as it represents

the response of the flow to the time-averaged nonlinear Reynolds stress. As irrotational

waves do not carry vorticity, the streaming flow stems from nonlinear interactions within

the viscous boundaries layers at solid walls and free surface [48–53].

Unfortunately, the intensity of the streaming flow and Stokes drift obey the same scaling

with the forcing amplitude and frequency, thus challenging the correct discernment of these

two components in experiments performed using stroboscopic PIV as in B17.

For large ratios of liquid depth over radius, h/R � 1, Faltinsen & Timokha (2019)

(FT19) [54] proposed an inviscid analytical theory describing a slow steady liquid mass ro-

tation during the swirl-type sloshing in a vertical circular cylindrical tank. The theory uses

the asymptotic steady-state wave solution by Faltinsen et al. (2016) [30] and supplements
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the traditional inviscid hydrodynamic model with an inviscid Craik-Leibovich equation to

describe the toroidal (azimuthal) part of the vortical Eulerian mean flow. Combining the

latter with the Stokes drift contribution calculated directly from the wave kinematics, they

computed the total azimuthal mean mass transport. Their analytical model compares re-

markably well with prior experiments by Hutton (1963) [55] and, to some extent, with those

by B17. Specifically, this inviscid model, as it is based on a multiple time-scale expansion

of the problem close to the fundamental resonance frequency, is particularly suited for de-

scribing the near-resonance flow characteristics of inviscid waves, but its predictive power

deteriorates far away from resonance, where most of the mean flow experiments by B17 were

performed. Furthermore, the inviscid framework employed in FT19, although augmented

with a Craik-Leibovich equation, overlooks the axisymmetric radial and axial components

of the poloidal streaming flow, which are non-negligible when viscous effects matter, as in

some of the cases considered by B17. As we will see, these velocity components produce

recirculating patterns in the vertical plane that are responsible for the top-to-bottom trans-

port essential to achieve good mixing and promote gas exchange.

Predicting those poloidal structures inevitably requires adopting a viscous framework

to correctly describe the effect of the boundary layer pumping on the fluid bulk and the

resulting mean flow generation. In the context of standing Faraday waves, Périnet et al.

(2017) [51] considered a model for streaming flows in quasi-inviscid fluids that includes

the complex coupling occurring in the viscous boundary layers. Through boundary layer

matching, the coupling resulted in adjusted boundary conditions within a three-dimensional

Navier–Stokes formulation of the streaming flow. Numerical simulations using this frame-

work demonstrated satisfactory agreement, both qualitatively and quantitatively, with the

velocity fields observed in their dedicated experiments.

However, these authors did not focus on the complex contact line dynamics and how it

might affect the streaming pattern, perhaps because the Hele-Shaw cells employed in their

experimental campaign were such that contact line streaming became quickly unimportant

sufficiently far from the lateral wall. This is in stark contrast with the sloshing experiments

by B17, where the poloidal recirculation vortices are mostly active near the contact line and

are fundamentally driven by the oscillatory boundary layers in the vicinity of this region.

While multiple scale expansions and matched asymptotics can be successfully used to

describe nonlinear interactions in regions near the rigid walls and free surface [51, 56], the
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contact line region, where the sloshing wave elevation is maximum, is even harder to con-

sider as it is almost analytically intractable. This analytical difficulty is what has made

predicting the structure of the Lagrangian mean flow in the orbital sloshing configuration

such a challenging task so far.

With the final goal of formalising a comprehensive framework capable of reproducing

the experimental findings of B17 and predicting mean flow generation in a wider variety

of configurations, the present study represents a first step in this direction. Here we con-

struct a truncated asymptotic approximation of the problem, where the solution at each

order is computed numerically to describe as accurately as possible the contact line re-

gion. Particular care is therefore devoted to the modelling of the solid wall and contact line

boundary conditions. The results of this asymptotic expansion in terms of first-order wave

and second-order mean flow are then thoroughly compared with the experiments by B17,

showing a remarkable agreement, at least for off-resonance forcing frequencies. For highly

viscous fluids, for which prior inviscid asymptotic models fail, our findings suggest that it

is fundamentally wrong to attribute the poloidal patterns solely to the Eulerian streaming

flow and that viscous corrections to the Stokes drift are equally important in the resulting

Lagrangian flow.

We point out that, in contradistinction to the analysis by FT19, which is designed to

deal with resonant inviscid waves, we propose here a diametrically opposed approach that

can deal with non-resonant but viscous orbital sloshing and is, therefore, more suitable to

compare with the experimental mean flow measurements by B17. This study is therefore

complementary to that of FT19 [54].

The manuscript is organized as follows. The considered flow configuration and govern-

ing equations, with their boundary conditions are given in §II. Section §III is dedicated to

the viscous linear analysis. The resolution of the linear problem is carried out numerically

and provides the first-order swirling sloshing wave, whose fundamental features are then

compared with those experimentally quantified by B17. The characterization of the weakly

nonlinear second-order Lagrangian mean flow and its decomposition into the Eulerian and

Stokes drift components are tackled in §IV. Final comments and conclusions are outlined

in §V. Appendix A complements the theoretical modelling and the numerical analysis by

computing the sensitivity of the mean flow to variations in the specifications of the sidewall

boundary condition, whereas Appendix B extends the comparison with the experiments to
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Figure 1. (a) Cartoon representation of the poloidal and toroidal mean flow fields as described in

Ref. 1 (B17). These two views correspond to the green-shaded planes in (b): the poloidal flow is

represented in the vertical yz-plane, while the toroidal flow is shown in the horizontal xy-plane at

a coordinate z = z0 below the free surface. (b) Sketch of a cylindrical container of radius R and

filled to a depth h with a liquid. The moving Cartesian reference frame is Ox̂ŷẑ. The origin of the

moving cylindrical reference frame Or̂θ̂ẑ is placed at the container revolution axis and, specifically,

at the unperturbed liquid height, z = 0. The container keeps fixed its orientation but undergoes a

time-harmonic circular orbit of radius A and angular frequency Ω.

other prior studies.

II. FLOW MODELLING

A. Geometry and shaking configuration

Let us consider a vertical cylindrical container of radius R filled to a depth h with a

liquid of density ρ and dynamic viscosity µ. The air-liquid surface tension is denoted by γ.

A cylindrical coordinate system is defined, where z is the vertical direction corresponding to

the axis of the container, r is the radial direction, θ is the azimuth, and the zero is set at the

unperturbed interface position at the centerline as in Fig. 1(b). The orbital (circular) shaking
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motion is represented as the combination of two sinusoidal translations with a π/2 phase

shift, thus leading to the following equations of motion for the container axis intersection

with the z = 0 plane, parametrized in cylindrical coordinates (r, θ),

ẋc =




−AΩ sin (Ωτ − θ) r̂

+AΩ cos (Ωτ − θ) θ̂
. (2)

with A and Ω the dimensional forcing amplitude and angular frequency, respectively.

B. Governing equations

The fluid motion associated with a displacement of the interface, η (r, θ, t), is governed

by the incompressible and unsteady Navier-Stokes equations:

∂u

∂t
+∇p− 1

Re
∆u = − (u ·∇) u + εf , ∇ · u = 0, (3)

which were made non-dimensional by using the container’s characteristic length R and

forcing time scale 1/Ω. In (3), u (r, θ, z, t) = {ur, uθ, uz}T denotes the velocity vector,

p (r, θ, z, t) = P (r, θ, z, t) + z/Fr is the reduced pressure and P the total pressure. The

non-dimensional external forcing reads

f = {cos (t− θ), sin (t− θ) , 0}T , (4)

with t = Ωτ the dimensionless time.

At z = η, the kinematic boundary condition prescribes that no flow is allowed through

the interface,
∂η

∂t
− uz|η = − ur|η

∂η

∂r
−
uθ|η
r

∂η

∂θ
, (5)

and the Laplace law gives the relation between the stress and the local curvature, κ (η):
[
− p|η +

η

Fr
+

1

Re

(
∇u +∇Tu

)∣∣
η

]
n =

1

BoFr
κ (η) n. (6)

with

κ (η) =
ηrr

(
1 +

η2θ
r2

)
+ (1 + η2r)

(
ηr
r

+ ηθθ
r2

)
− 2ηr

ηθ
r2

(
ηrr + ηθ

r

)

(
1 + ηr + ηθ

r

)3/2 . (7)

The system is thus characterized by five nondimensional numbers:

H =
h

R
= 2.168, ε =

A

R
∈ [0.006, 0.20] , F r =

RΩ2

g
∈ [0.0135, 0.45] , (8)

Bo =
ρgR2

γ
= 1100, Re =

ΩR2

ν
∈ [50, 1500] ,
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in order, the aspect ratio of the cylinder H, the normalized forcing amplitude ε, the Bond

number Bo, the Reynolds number Re, and the Froude number Fr. Note that the Bond and

Reynolds numbers here defined give, respectively, non-dimensional measures of the capillary

length lcap =
√
γ/ρg and the Stokes boundary layer thickness lSt =

√
2ν/Ω. The values

given in (8) correspond to the range of parameters investigated in Ref. 1 (B17), to which

we will restrict our analysis. These values correspond to the case of a circular cylindrical

container of radius R = 51.2 mm filled to a depth h = 111 mm with two different silicon

oils of air-liquid surface tension γ = 21 × 10−3 N m−1 and kinematic viscosity ν = 50 or

500 mm2 s−1.

C. Treatment of the sidewall: a macroscopic depth-dependent slip-length model

While the no-slip and no-penetration boundary conditions represent natural choices for

the modelization of the solid bottom, the modelling of the sidewall boundary condition is

more subtle and requires different strategies. It is indeed well-assessed in the literature that

the no-slip condition and a moving contact line are not compatible with each other [57, 58]

as their simultaneous imposition would yield a stress singularity at the moving contact line.

A common treatment consists in adopting a slip-length model, thus assuming that the fluid

speed relative to the solid wall is proportional to the viscous stress [59–61] and that, together

with the no-penetration condition, provides the boundary conditions

ur = 0, uθ = ls (z)

(
∂uθ
∂r
− uθ

)
, uz = ls (z)

∂uz
∂r

, at r = 1. (9)

It was hypothesized in Refs. 62 and 63 that the phenomenological macroscopic slip length

appearing in equation (9) should not be assumed constant along the wall, but rather spatially

dependent on the position along the lateral wall and vanishing at a certain distance away

from the contact line, where the flow obeys the no-slip condition. With this in mind, we

employ here a depth-dependent slip length as proposed in Refs. 64 and 65, which has been

shown to correctly estimate the linear dissipation originating in the Stokes boundary layers

at the lateral solid walls in various flow configurations. Briefly, we postulate that the slip

length ls (z) is described by the exponential law

ls (z) = lcl exp

(
−z
δ

log

(
lδ
lcl

))
, z ∈ [−H, 0] . (10)

In equation (10), lcl is the slip-length value at the contact line, whereas lδ is its value at a

distance δ below the contact line, z = −δ, with δ representing the size of the slip region
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[63]. In principle, lcl, lδ and δ are all free parameters. However, keeping in mind that,

macroscopically speaking, we aim at mimicking a stress-free condition in the vicinity of the

contact line, as we assume the latter to obey the free-end edge condition,

∂η

∂r

∣∣∣∣
r=1

= 0, (11)

and at reproducing the no-slip condition after a certain distance δ, a natural choice consists

in using a penalization-like technique where a large value of lcl � 1 (∼ 102÷104) and a small

value of lδ � 1 (∼ 10−4÷10−6) are imposed. The range of values proposed in brackets is

based on the sensitivity analysis reported in Ref. 64. The remaining free parameter is the slip

region penetration depth, δ. What mostly matters in choosing the value of this parameter is

that δ should be kept small compared to all the other physical scales at hand in the problem,

i.e. H, R, capillary length 1/
√
Bo, Stokes boundary layer thickness

√
2/Re or, at most,

comparable to the smallest one. Hence, results presented throughout the manuscript are

obtained by fixing δ = 1/
√
Bo ≈ 0.03 (only 1.4% of H), while the effect of this parameter

on the flow fields is more thoroughly explored in Appendix A confirming the need to keep

delta small enough.

III. VISCOUS LINEAR ANALYSIS: FIRST-ORDER SWIRLING SLOSHING

WAVE

Sufficiently far from fundamental harmonic resonances or any other secondary resonances

[38, 39] and in the limit of small forcing amplitude ε = A/R� 1, the linear viscous analysis

provides a good approximation of the time-harmonic wave response. Let us first decompose

asymptotically the flow fields as

q (r, θ, z, t) = {u, p, η}T = εq′ (r, θ, z, t) + ε2qE (r, z) +O
(
ε3
)
, (12)

where the first term, εq′, represents the linear time-harmonic sloshing swirling wave, whereas

the second term, ε2qE, indicates the associated second-order time-averaged axisymmetric

Eulerian mean flow, whose characterization constitutes one of the main purposes of this

work and will be tackled in §IV

At order ε, governing equations reduce to a forced Stokes problem supplemented by

the kinematic equation describing the evolution of the interface linear perturbation. This
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problem can be conveniently recast in an operator form as

(∂tB −A) q′ = f , (13)

with

B =




Iu 0 0

0 0 0

0 0 Iη


 , A =




Re−1∆ −∇ 0

∇T 0 0

Iuz 0 0


 , q′ =




u′

p′

η′


 , (14)

and where Iu, Iuz and Iη are, respectively, the identity matrices associated with the velocity

field u, the axis velocity component uz and the interface η. Note that the components of

the vectorial stress condition (6) linearized around the rest state with a flat static interface,

i.e.
∂u′r
∂z

∣∣∣∣
0

+
∂u′z
∂r

∣∣∣∣
0

= 0,
∂u′θ
∂z

∣∣∣∣
0

+
1

r

∂u′z
∂θ

∣∣∣∣
0

= 0, (15a)

− p′|0 +
η′

Fr
+

2

Re

∂u′z
∂z

∣∣∣∣
0

− 1

BoFr
∆η′ = 0, (15b)

do not explicitly appear in (13)-(14), but they are rather enforced as a boundary condition

at the interface as in Refs. 66 and 67. The same holds for the Navier slip condition (9) as well

as for the no-slip conditions at the bottom and the free-end edge contact line condition (11),

which are enforced at the lateral wall, at the solid bottom and the contact line, respectively.

Given the time and azimuthal periodicity of the external forcing (4)

f = {1/2,−i/2, 0}T ei(t−θ) + c.c. = f̂ei(t−θ) + c.c. , (16)

one can seek a solution to system (13) obeying the normal mode ansatz

q′ (r, θ, z, t) = q̂ (r, z) ei(t−θ) + c.c. , (17)

where c.c. stands for complex conjugate. Substitution of (16) and (17) eventually leads to

the following linear problem

(iB −A−1) q̂ = f̂ . (18)

We note that, after introducing the azimuthal decomposition into wavenumbers m, the

linear operator A depends on this wavenumber m, that is why a subscript −1 (= m) has

been introduced in (18). The operator A also implicitely depends on the driving frequency

Ω through the Reynolds number definition given in (8).
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A. Discretization technique

The linear operators B and A−1 are discretized in space by means of a staggered

Chebyshev–Chebyshev collocation method implemented in Matlab analogous to that de-

scribed in Ref. 67. The three velocity components are discretized using a Gauss–Lobatto–

Chebyshev (GLC) grid, whereas the pressure is staggered on Gauss–Chebyshev (GC) grid.

Accordingly, the momentum equation is collocated at the GLC nodes and the pressure is

interpolated from the GC to the GLC grid, while the continuity equation is collocated at

the GC nodes and the velocity components are interpolated from the GLC to the GC grid.

This results in the classical PN -PN−2 formulation, which is sufficient to suppress spurious

pressure modes in the discretized problem [61, 68]. A two-dimensional mapping is then used

to map the computational space onto the physical space. Lastly, the partial derivatives

in the computational space are mapped onto the derivatives in the physical space, which

depend on the mapping function. For further details see Refs. 69–72.

Mesh convergence was tested for different refinements, starting from a grid size of Nr = 40

and Nz = 40 up to Nr = 100 and Nz = 160 with a progressive increment of 5 GLC nodes

along directions r and 10 GLC nodes along z. Nr and Nz denote here the number of radial

and axial nodes, respectively. A mesh size of Nr = 75 and Nz = 110 was seen to be suf-

ficient to ensure a good convergence of the results that will be discussed in the following.

Particularly, a Chebyshev grid made of 110 points in the axial direction contains 10 grid

points along the lateral wall within a distance δ = 1/
√
Bo = 0.03 from the interface.

After discretization, equation (18) rewrites

(iB−A−1) q̂ = f̂ . (19)

and, at least in non-resonant conditions, i.e. when Ω does not coincide with one of the natural

frequencies of the system, can be straightforwardly resolved in Matlab for an imposed driving

frequency Ω.

Lastly, we note that the numerical scheme requires explicit boundary conditions at r = 0

to regularize the problem on the revolution axis [61]:

m = 0 : ûr = ûθ =
∂ûz
∂r

=
∂p̂

∂r
=
∂η̂

∂r
= 0, (20a)

|m| = 1 :
∂ûr
∂r

=
∂ûθ
∂r

= ûz = p̂ = η̂ = 0, (20b)

11



|m| > 1 : ûr = ûθ = ûz = p̂ = η̂ = 0. (20c)

B. Comparison with experiments by Bouvard et al. (2017)

In this section, we compare the prediction from the present numerically-based viscous

linear analysis with experiments by B17. This comparison is outlined in terms of two

fundamental flow quantities such as the wave fields in the horizontal, u′⊥, and vertical planes,

u′//,

|u′⊥| (r, θ, z, t)
ΩR

= ε
√

u′2r + u′2θ ,
|u′//| (r, θ, z, t)

ΩR
= ε
√

u′2r + u′2z , (21)

and phase shifts with the external forcing. Figure 2 aims precisely to reproduce their Fig. 2,

showing instantaneous snapshots of the sloshing wave taken at a phase π/2, for which

the cylinder velocity is aligned with the unit vector −x̂. Panels (a) and (b) show the

rescaled horizontal wave velocity experimentally measured at a driving frequency Ω/ω1 =

0.67, forcing amplitude ε = 0.057 (A = 2.9 mm), and for a kinematic viscosity ν = 50

(Re = 660) and 500 mm2 s−1 (Re = 66), respectively. Although we do not neglect surface

tension in our analysis, for the sake of comparison with B17, the value of the lowest system’s

natural frequency ω1 used to rescale the driving frequency is taken from the dispersion

relation of pure gravity waves [41],

ω2
n = kn tanh (knH) with n = 1, 2, . . . (m = ±1) , (22)

where the wavenumbers kn are the nth zeros of the derivative of the Bessel function of the

first kind and first order J1 (k1 ' 1.841, k2 ' 5.331, . . .). In the configurations here con-

sidered, the frequency correction to (22) due to surface tension is approximately 0.1% and

therefore negligible.

The numerical wave fields reported in panels (c) and (d) are in good qualitative and

quantitative agreement with the experimental ones shown in panels (a) and (b). Specifi-

cally, the boundary layers at the cylinder wall and the phase delay, more significant for the

larger viscosity case, are both very well captured by the numerical analysis.

Figure 3(a) compares the amplitude of the wave field, defined as the norm of the hor-

izontal velocity at the center, and its phase delay as systematically measured by B17 for

driving frequencies Ω/ω1 ∈ [0.5, 1.5] and at a fixed forcing amplitude ε = 0.057. For the

lower viscosity, the measured wave amplitude diverges as expected around Ω/ω1 ≈ 1 and
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Figure 2. Instantaneous snapshots of the sloshing wave taken at a phase π/2, for which the

cylinder velocity is aligned with the unit vector −x̂. (a)-(b) Horizontal wave velocity experimentally

measured by B17 at a driving frequency Ω/ω1 = 0.67, amplitude ε = 0.057, and for a kinematic

viscosity ν = 50 (a) and 500 mm2 s−1 (b). The snapshots are taken at a coordinate z = z0 = −0.23

below the free surface. The colour map represents the rescaled velocity magnitude |u′⊥|, with

εu′r and εu′θ given by the arrows. (c)-(d) Same as in (a)-(b) but numerically computed according

to (19). (e)-(f) Vertical wave velocity |u′//| associated with snapshots (a)-(b).
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the resonance curve displays a hardening-like behaviour with a clear hysteresis, which is a

typical nonlinear feature and is overlooked by the present linear model [28, 30, 40]. We

anticipate that several approaches, some of which are mentioned in the final comments §V,

could be employed to account for nonlinear effects. However, this is not the main purpose

of this work.

With regards to the more viscous fluid, viscous linear effects are sufficient to smoothen

the resonance curve, which shows a low amplitude peak shifted at Ω/ω1 ≈ 1.1. The com-

puted peak occurs around Ω/ω1 ≈ 1.01, i.e. for Ω > ω1, despite the presence of viscous

dissipation. As explained in Ref. 35, this counterintuitive behaviour is caused by the depen-

dence of the forcing amplitude on the driving frequency. Nevertheless, such a shift in the

resonant frequency is not sufficient to explain a 10% increase, thus suggesting that nonlinear

hardening-type effects are, to some extent, at play. The phase delay between the forcing

and the wave velocity, defined as the angle, measured in the clockwise direction, between

the fluid velocity at the center of the cylinder and −x̂, and shown in Fig. 3(b), is generally

well captured by the present model, except for the hysteretic jump occurring at Ω/ω1 ≈ 1.1

in the low viscosity case.

A further comparison is performed for variation of the forcing amplitude ε at fixed driv-

ing frequencies Ω/ω1. This is reported in Fig. 3(c), showing also a good agreement between

the viscous numerical analysis and experiments for Ω/ω1 = 0.67 and Ω/ω1 = 0.78, whereas

the agreement starts to deteriorate by increasing ε closer to the resonant frequency, e.g. at

Ω/ω1 = 0.89.

For the sake of clarity, we did not include in Fig. 3 the curves from the inviscid potential

model of B17, but the improvement is striking, especially for the more viscous fluid, for

which dampening effects cannot be neglected.

As a final comment to this section, we note the presence of a second resonant peak in

Fig. 3(a) and (b), which corresponds to the second fundamental natural frequency of the sys-

tem, i.e. ω2. No experiments were reported for driving frequencies larger than Ω/ω1 = 1.5,

but the presence of this peak and its maximum value in panel (a) is consistent with that

predicted by the linear damped interfacial wave theory proposed in Refs. 35 and 36. These

authors also compare their predictions with those from B17. By looking at their Fig. 6,

in comparison to Fig. 3 of this manuscript, both analyses give similar estimates of the un-

derlying flow quantities; with regards to the high viscosity case, the wave amplitude peak
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Figure 3. This figure aims to reproduce Fig. 3 of B17. (a) Norm of the horizontal wave velocity

measured at r = 0, z = z0 = −0.23 , as a function of the forcing frequency Ω/ω1 at a fixed forcing

amplitude ε = 0.057, for the two different fluid viscosities. (b) Phase delay ∆ between the forcing

and the wave field at r = 0 and defined as the angle, measured in the clockwise direction, between

the fluid velocity at the center of the cylinder and the unit vector −x̂. (c) Norm of the wave

velocity as a function of the forcing amplitude ε = A/R at three values of the forcing frequency, for

ν = 500 mm2 s−1. Markers correspond to the experiments by B17, whereas black solid and dashed

lines show the present predictions according to the viscous linear solution of (19).
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is lower and closer to experiments in the present model, whereas the phase delay is better

reproduced in Ref. 35. We note that in contradistinction with our analysis, the phase delay

curve reported in Figure 6b of Ref. 35 has been produced by accounting for only the first

natural mode and using the interface elevation at the theoretical wave crest, instead of the

reconstructed velocity field at the container’s axis and at a depth z = −0.23, which was the

quantity experimentally measured by B17.

Besides these details, the substantial difference between Ref. 35 and the present analysis

consists in the fact that in Refs. 35 the wave field is constructed in the potential limit and

only englobes viscous effects in the form of linear damping coefficient. On the contrary, in

this work, we numerically solve the actual viscous problem to recover the details of flow

fields, i.e. the boundary layers visible in Fig. 2(c)-(f). This constitutes a main contribution

of this work, as the computation of the correct wave field and, specifically, of the boundary

layers and the corner region near the contact line, are essential in the prediction of the

second-order Lagrangian mean flows tackled in the following section.

IV. VISCOUS WEAKLY NONLINEAR ANALYSIS: SECOND-ORDER

LAGRANGIAN MEAN FLOW

Recalling the definition given in §I, the total Lagrangian mean flow, uL, is given by the

sum of the Eulerian mean flow, uE, and the Stokes drift, uS:

u (r, z) = uE (r, z) + uS (r, z) . (23)

In their campaign, Bouvard et al. (2017) (B17) [1] only characterized the total Lagrangian

mean flow, but could not experimentally separate the Eulerian and Stokes drift contributions.

Using the numerical tools developed in §III, in this section we will first predict u and

compare it to experiments. Successively, we will provide a thorough characterization of the

two individual contributions, uE and uS.

A. Eulerian streaming flow

In the weak steady streaming limit, the streaming flow can be computed asymptotically

according to (12) as a second-order correction to the first-order wave field. By introducing

the (non-dimensional) time-average 〈v〉 = (2π)−1
∫ 2π

0
v dt, with v a generic vectorial field, at
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order ε2 the time-averaged bulk equations reduce to a steady Stokes problem linearly forced

by nonlinear terms which are quadratic in the first-order wave solution:

∇pE − 1

Re
∆uE = −〈(u′ ·∇) u′〉, ∇ · uE = 0, (24)

subjected to the no-slip boundary condition at the solid bottom, z = −H, the Navier-slip

condition at the lateral wall, r = 1, the free-end edge contact line condition at r = 1 and

z = 0, and to the steadily forced kinematic condition at the interface, z = 0,

− uEz
∣∣
0

= 〈η′ ∂u
′
z

∂z

∣∣∣∣
0

− u′r|0
∂η′

∂r
− 1

r
u′θ|0

∂η′

∂θ
〉, (25)

where also the three dynamic equations are imposed:

1

Re

(
∂uEr
∂z

+
∂uEz
∂r

)∣∣∣∣
0

= (26a)

〈n′r
(
−P ′ + 2

Re

∂u′r
∂r

∣∣∣∣
0

)
+
n′θ
Re

(
r
∂

r

(
u′θ
r

)
+

1

r

∂u′r
∂θ

)∣∣∣∣
0

− η′

Re

∂

∂z

(
∂u′r
∂z

+
∂u′z
∂r

)∣∣∣∣
0

〉,

1

Re

(
∂uEθ
∂z

+
1

r

∂uEz
∂θ

)∣∣∣∣
0

= (26b)

〈 n
′
r

Re

(
r
∂

r

(
u′θ
r

)
+

1

r

∂u′r
∂θ

)∣∣∣∣
0

+ n′θ

(
−P ′ + 2

Re

(
1

r

∂u′θ
∂θ

+
u′r
r

)∣∣∣∣
0

)
− η′

Re

∂

∂z

(
∂u′θ
∂z

+
1

r

∂u′z
∂θ

)∣∣∣∣
0

〉,

− pE
∣∣
0

+
ηE

Fr
+

2

Re

∂uEz
∂z

∣∣∣∣
0

− 1

BoFr
∆ηE = (26c)

〈 n
′
r

Re

(
∂u′r
∂z

+
∂u′z
∂r

)∣∣∣∣
0

+
n′θ
Re

(
∂u′θ
∂z

+
1

r

∂u′z
∂θ

)∣∣∣∣
0

− η′ ∂
∂z

(
−p′ + 2

Re

∂u′z
∂z

)∣∣∣∣
0

〉.

with n′ = {n′r, n′θ, n′z}T = {−∂rη′,−r−1∂θη′, 1}T and P ′ = p′|0 − η′

Fr
+ 1

BoFr
∂κ(η)
∂η

∣∣∣
0
η′.

Given the time- and azimuthal-periodicity of the first-order wave solution (17), time-

averaging is equivalent to azimuthally-averaging, hence implying that the forcing terms

appearing in (24)-(26c) are altogether axisymmetric and will therefore induce an axisym-

metric streaming flow, i.e. with m = 0. It is important to note that this holds only for the

case of a purely circular orbit, for which the forcing writes as in equation (16), while it is

generally not the case when considering elliptic shaking conditions [30, 40].

After discretisation, the second-order problem is compactly written as

−A0q
E = 〈F̂ 〉. (27)
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that, assuming the non-singularity of the discretized operator A0, is straightforwardly re-

solved in Matlab giving in input the forcing vector F̂ , which is only a function of the

first-order wave solution computed in §III.

B. Stokes drift

Concerning the Stokes drift contribution, expansion in powers of a wave-amplitude pa-

rameter ε produces the standard approximation [45–47, 73] to the Stokes velocity

uS = 〈(ξ′ ·∇) u′〉, (28)

with u′ the linear first-order velocity of the wave and ξ′ the associated displacement, defined

by ∂tξ
′ = u′ and 〈ξ′〉 = 〈u′〉 = 0.

Using formula (28), it can be shown that in the inviscid framework, only the azimuthal

component of the drift is nonzero, hence indicating that the poloidal recirculations revealed

by experiments can only be due to the steady Eulerian streaming flow or viscous corrections

of the Stokes drift [1]. One of the key points of the present viscous weakly nonlinear analysis

is precisely the quantification of these viscous corrections to the Stokes drift and their role

in the prediction of the total poloidal Lagrangian mean flow.

C. Comparison with Bouvard et al. (2017) in terms of total Lagrangian mean flow

In comparing our predictions with experiments, let us start from the total Lagrangian

mean flow u visualized, by analogy with B17, in the horizontal (toroidal flow) and vertical

(poloidal flow) planes. Panels (a) and (b) of Fig. 4 show the reconstructed and symmetrized

mean flow fields from B17 for the more viscous fluid with ν = 500 mm2 s−1.

The resemblance between the experimental and the numerical fields, shown in panels (c)

and (d), is strong. Note that those panels represent vertical cuts of axisymmetric structures.

As in experiments, the computed toroidal flow appears co-directed with the swirling sloshing

wave in each inner point beneath the free surface at a coordinate z = z0 = −0.23, tends to

zero when approaching the sidewall and reaches a maximum value at approximately r = 0.7.

Analogously, the computed poloidal flow displays two vortices, an upper one with ascending

flow along the axis and a lower one with descending flow, separated by a stagnation point

located at z = −0.65 in experiments and at z = −0.55 in the present analysis. The main

qualitative difference between the two fields is the strong radial surface flow pointing towards
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Figure 4. (a)-(b) Lagrangian mean flow measured by B17 using stroboscopic PIV. Two different

measurements, at the phase π/2 of the container trajectory, are shown, i.e. (a) in the horizontal

plane at a coordinate z = z0 = −0.23 below the free surface, and (b) in the vertical plane. These

measurements correspond to a driving frequency Ω/ω1 = 0.67, a forcing amplitude ε = 0.057 and

a fluid viscosity ν = 500 mm2 s−1. Panels (c) and (d) display the same fields shown in (a)-(b), but

numerically predicted according to the present viscous weakly nonlinear analysis.

the wall, whose intensity is weaker in the experiments. The intense oblique jets sprouting

from the contact line are also well captured. Reproducing the latter aspect is only possible by

proper modelling of the sidewall boundary layer and the corner region near the contact line,

where the wave amplitude is at its maximum. Appendix A discusses indeed how variations in

the parameters of the slip-length model (10) lead to significant modifications of the poloidal

flow.
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Figure 5. (a)-(c) Decomposition of (c) the poloidal Lagrangian mean flow reported in Fig. 4(d)

into (a) its Eulerian component and (b) Stokes drift contribution. (d)-(f) Decomposition of (f) the

toroidal Lagrangian mean flow shown in Fig. 4(c) into (d) its Eulerian component and associated

(e) Stokes drift contribution. Note that in (a)-(b) and (d)-(e), the colour bars are saturated to the

same maximum value of (c) and (d).

D. Characterization of the individual contributions uE and uS

In contradistinction with the experimental stroboscopic PIV employed by B17, the

numerically-based weakly nonlinear approach here adopted allows us to compute indepen-

dently and from first principles the individual Eulerian and Stokes drift contributions to the

total mean flow in the weakly nonlinear regime. Fields reported in Fig. 4(c) and (d) are

therefore decompose into the uE and uS components, which are shown in Fig. 5.

Panel (a) of Fig. 5 illustrates the poloidal Eulerian flow in the vertical plane. The two

jets emanating from the contact line as well as the stagnation point at z = −0.55 are
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intrinsic features of the Eulerian streaming flow. This flow ingredient also shows another

stagnation point along the axis at z = −0.15. The presence of a closed recirculation bubble

along the (toroidal) rotation axis displaying these two stagnation points is reminiscent of

the recirculation bubble associated with the vortex breakdown phenomenon. An example

of such a mechanism was investigated in [74], where vortex breakdown along the vertical

axis occurs in a closed container flow with a solid disk (lid) rotating on one side. In orbital

sloshing, the container is open on one side, and the lid rotation is replaced by the wave

rotation. The origin of the axial flow, which together with the toroidal rotation, generates

vortex breakdown can in turn be linked to the famous secondary flow generation, popular-

ized by the tea leaves paradox [75], according to which, in the presence of mean rotation,

here generated by the rotating wave instead of by stirring motion, a secondary flow sets in

directed downward to the free surface along the axis.

Note that this recirculation region disappears in favor of a uni-axial stagnation point in

the overall flow u (see panel (c)) because of the upward vertical velocity induced by the

viscous correction to the Stokes drift in the vertical plane (see panel (b)). Interestingly, the

vortex near the contact line appears as rotating in opposite directions in the streaming and

Stokes drift components. None of the two fields, taken individually, matches the experimen-

tal one, but only their superposition does (panel (c)). This is strong evidence that, at least

for highly viscous fluids, radial and axial corrections to the Stokes drift must be retained, as

they may be locally or globally of the same order of magnitude as their Eulerian analogous.

Panels (d) and (e) outline the same decomposition but in the horizontal plane for the

toroidal flow, showing again the contrast in the Eulerian and Stokes drift components and

their simultaneous importance and relevance in their superimposition. The radial profiles

of the radial and azimuthal components normalized by the maximum of the Lagrangian

azimuthal component uθ are more clearly displayed in Fig. 6 for ν = 500 mm2 s−1 (panels

(a)-(c)) and 50 mm2 s−1 (panels (d)-(f)). This figure better highlights how only by combin-

ing the two contributions uE and uS it is possible to recover the experimental fields. We

also observe the contrast between the Eulerian and Stokes drift contributions. While the

toroidal Stokes drift at a distance z = z0 = −0.23 below the free surface is co-directed with

the container motion, the corresponding Eulerian contribution is counter-directed for the

lower viscosity fluid, thus implying return flow, but it is co-directed for the higher viscosity
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Figure 6. Radial and azimuthal velocity profiles of the various mean flow components normalized

by the maximum azimuthal Lagrangian velocity (see panel (c) and (f)) and measured at z = z0 =

−0.23 for ε = 0.057 and Ω/ω1 = 0.67. (a) Eulerian component, (b) Stokes drift contribution and

(c) Lagrangian mean flow computed for ν = 500 mm2 s−1. (d)-(f) Same but for ν = 50 mm2 s−1.

Black solid and dashed lines correspond, respectively, to the azimuthal and radial velocity profiles

numerically computed. Markers correspond instead to the experimental measurements by B17:

filled squares for the azimuthal profiles and empty squares for the radial profiles. Note that these

measurements give the total Lagrangian mean flow but are here reported in each panel for the sake

of comparison with the individual contributions.

fluids, which is in stark contrast to the traditional picture for weakly viscous fluids [46, 54].

The radial velocity profiles uEr and uSr have opposite signs for ν = 500 mm2 s−1, but their

combination produces an inward radial velocity ur < 0 that matches the experiments (see

panel (c)), with ur nearly zero for r → 0. On the other hand, for ν = 50 mm2 s−1, the sign
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Figure 7. Streamlines of the poloidal Lagrangian mean flow shown in the vertical plane for ten dif-

ferent fluid kinematic viscosities ranging from ν = 500 mm2 s−1 to ν = 50 mm2 s−1 and computed

for Ω/ω1 = 0.67 and ε = 0.057. This collection of streamlines shows how the poloidal recirculation

vortices active in the neighbourhood of the contact line progressively evolve with changes in vis-

cosity. The background colours in panels (a) and (j) show the quantity |u//|/ΩR already displayed

in Fig. 4(d) for ν = 500 mm2 s−1.

of the Eulerian component uEr is negative for r < 0.8 and positive for r > 0.8. The overall

profile matches experiments, with ur nearly zero everywhere except for r → 1. Here, the

numerics overestimates the peak of ur at r = 0.95, but it well captures the local increase

of uθ near the wall. Note that the considerations outlined in this section with regards to

Fig. 6 only apply to the chosen coordinate z = z0 = −0.23, and the relative contribution

23



may differ if selecting other axial coordinates [1].

E. Effect of viscosity on the poloidal recirculation vortex near the contact line

Taking as reference limits the two fluid viscosity used by B17, we now explore how changes

of viscosity ν ∈ [50, 500] mm2 s−1 modify the poloidal Lagrangian mean flow. To this end,

Fig. 7 reproduces the mean flow streamlines computed at different ν for ε = 0.057 and

Ω/ω1 = 0.67.

We have already commented how, at the largest viscosity (panel (a)), there is a first

poloidal recirculation vortex near the contact line, which extends towards the container axis

below the free surface. A second vortex, rotating in the opposite direction, seats below and

invades the whole cell. By decreasing the kinematic viscosity, the upper vortex splits in two

(panels (d) and (e)), and a low-intensity vortical structure starts appearing near the bottom

wall (panel (f)). By further decreasing ν, the bottom vortex grows in size and migrates

upward until it eventually merges with the remaining of the upper vortex (panel (i)). The

lower poloidal recirculation now takes a large portion of the cell, whereas the upper vortex

is now confined in the neighbourhood of the contact line region. In other words, reducing

ν from 500 to 50 mm2 s−1, produces an inversion in the rotation of the nearest contact line

poloidal vortex. Figure 7 illustrates how this behaviour, consistent with the experiments

described in B17, is progressively revealed by decreasing ν.

F. Effect of viscosity and driving frequency on the angular velocity at the container

axis

An interesting local measure of the mean flow amplitude as a function of the forcing

frequency and amplitude can be extracted by looking at its dominant azimuthal contribution

near the center, i.e. at the angular velocity ω0 = limr→0 uθ/r, e.g. at a depth z = z0 = −0.23,

which is plotted in Fig. 8(a) as a function of Ω/ω1 for ε = 0.057 and in Fig. 8(a) as a function

of ε for fixed ratios Ω/ω1. In both panels, black markers correspond to the experiments of

B17, while the coloured solid lines are given by the asymptotic scaling

u

ΩR
∼ ε2
[
(ω1/Ω)2 − 1

]2 (29)

with a prefactor K fitted from experiments. Note that the scaling above does not depend

on the fluid viscosity and is consistent with the calculation by Hutton (1963) [55], who only
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Figure 8. (a) Mean angular velocity ω0/Ω = limr→0uθ (r, z = z0) /rΩ at r = 0, z = z0 = −0.23

as a function of the driving frequency Ω/ω1 at a fixed forcing amplitude ε = 0.057, for two fluid

viscosities, and (b) as a function of the forcing amplitude ε = A/R at three values of the driving

frequency, for ν = 500 mm2 s−1. In (a), markers correspond to the experiments by B17 and the

coloured solid lines show their weakly nonlinear scaling law with a prefactor computed by fitting the

measurements. The coloured crosses are instead associated with the present numerical predictions.

considered the Stokes drift associated with the potential flow solution. However, the Eulerian

and Stokes drift contributions scale in the same way and this makes it difficult to discern

the two and anticipate which one is more important in determining the total Lagrangian

mean flow. While the experiments of Hutton (1963) [55] were conducted with a very low

viscosity fluid, i.e. tap water, for which assuming that the Stokes drift well approximates

the solid body rotation near the center is a reasonable assumption, the experiments by B17
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Figure 9. The experimentally measured 1 (B17) and theoretical (black solid line) [54] (FT19) liquid

mass-transport velocity in the azimuthal (solid circles and solid black line, respectively) and radial

(empty circles) directions at z = z0 = −0.23, Ω/ω1 = 0.75 (a) and 0.78 (b), and ε = 0.057. The

solid and dashed light blue lines correspond to the azimuthal and radial profiles, respectively, as

predicted by the present analysis.

offer a different perspective. We have indeed shown in Fig. 6 that both contributions are

important when dealing with moderately or highly viscous fluids. Furthermore, the effect of

viscosity appears in the prefactor K required to fit the experimental data in Fig. 8(a), i.e.

K ' 1.1± 0.1 for the least viscous fluid and K ' 1.5± 0.1 for the more viscous one.

Through the present viscous analysis we can predict the angular velocity in the two cases

and we can quantify the effect of viscosity. The coloured crosses reported in panel (a)

correspond to the present weakly nonlinear prediction, which gives a good agreement with

the experiments and with fitting law by B17, without the need for any fitting parameter.

Panel (b) of Fig. 8 shows that our numerical predictions match the scaling law and

the experiments at lower driving frequency, but the agreement, as expected, deteriorates

approaching the resonant frequency.

G. Direct comparison with predictions by Faltinsen & Timokha (2019)

In this final section, we compare our predictions with the theoretical analysis of Faltinsen

& Timokha (2019) (FT19) [54] and the experimental profiles of B17.
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The theory of FT19 predicts the overall azimuthal mass transport as the sum of an

azimuthal non-Eulerian mean, i.e. Stokes drift type, and a vortical Eulerian-mean flow,

governed by the inviscid Craik-Leibovich equation [50], whose unique non-trivial solution

is selected by inputting the information that the mass-transport velocity should tend to

zero when approaching the lateral wall. In contradistinction with the present analysis,

the model of FT19 is built within the inviscid framework and therefore it cannot predict

the axial and radial mean flow velocities, i.e. the poloidal flow. However, while our study

assumes a straightforward asymptotic expansion that is not suitable to describe the resonant

regime, the study of FT19 is based on the Narimanov-Moiseev multimodal sloshing theory

[76–81]. The theory is based on single-mode linear sloshing solution for computing the

amplitude parameter and uses a rigorous multiple timescales framework for describing the

nonlinear wave dynamics near the primary harmonic resonance [30, 34, 82]. A more accurate

quantification of the wave amplitude when approaching the resonant condition Ω/ω1 → 1 is

important in predicting the intensity of the mean flow. We believe that this is the reason

why the azimuthal mass-transport velocity given by our model is in good agreement with

FT19 and B17 at Ω/ω1 = 0.75, while this agreement becomes worse at Ω/ω1 = 0.78.

Consistently with experiments, the estimated radial velocity shows a peak around r = 0.9,

but its value overestimates the measurements, especially at Ω/ω1 = 0.78, suggesting that

nonlinearities in the wave are no longer negligible.

V. CONCLUSIONS

In this paper, we built a numerically-based viscous weakly nonlinear analysis capable of

reproducing the wave flow and the associated Lagrangian mean flow experimentally observed

by Bouvard et al. (2017) (B17) [1] for an orbitally shaken cylinder in nonresonant conditions,

i.e. Ω/ω1 < 0.8, and filled with moderately or highly viscous fluids, i.e. Re = ΩR2/ν . 1000.

These predictions include (i) the spatial structure of the first-order wave field and its phase

delay with respect to the external driving, which increases with viscosity; (ii) the toroidal

(azimuthal) mean flow in the horizontal plane; (iii) the poloidal recirculation vortices mostly

active near the contact line and their behaviours as control parameters, such as the fluid

viscosity, are varied.

The last aspect represents one of the main contributions of this work. Indeed, the descrip-

tion of the poloidal flow, even in the weak streaming regime, represents a challenging task as
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it requires the modelisation of the viscous sloshing modes and, specifically, the description

of the flow dynamics near the contact line, which is essential in determining the spatial

structure of the mean recirculation vortices. This was done here numerically by solving

the full viscous hydrodynamics problem supplemented with a depth-dependent slip-length

model [64], which was shown to provide a good description of the boundary layer flow near

the lateral wall and the resulting second-order weakly nonlinear momentum transfer from

the boundary layer region to the fluid bulk, from which the Eulerian mean flow originates.

The analysis allowed us to characterize the two contributions to the total Lagrangian

mean flow, i.e. the Eulerian mean flow and the Stokes drift, which were not individually

accessible in the experiments of B17. The toroidal (azimuthal) mean flow acting in the

horizontal plane has been interpreted so far as mainly produced by the Stokes drift, which is

traditionally seen as a purely kinematic contribution, with the Eulerian streaming flow only

responsible for the poloidal flow in the vertical plane. We showed here that this interpreta-

tion fails for moderately or highly viscous sloshing dynamics, for which viscous corrections

to the Stokes drift have the same order of magnitude as the Eulerian streaming flow and

therefore contribute to defining the structure of the poloidal Lagrangian mean flow. The

same holds for the toroidal (azimuthal) component of the Eulerian streaming flow, which

may be of the same order of magnitude as the toroidal (azimuthal) Stokes drift. Whereas

the toroidal (azimuthal) Stokes drift at a given distance below the free surface is always co-

directed with the container motion, we showed that the corresponding Eulerian contribution

is largely counter-directed to the container motion for lower fluid viscosities, thus implying

return flow [46], but can be co-directed for highly viscous fluids. We also elucidated the

effect of viscosity variations in the reorganization of the poloidal vortices near the contact

line, whose predicted structure matched fairly well with the experimental one.

The numerical analysis developed in this work offers a powerful and efficient tool allowing

mean flow predictions without the need of time-stepping computationally expensive three-

dimensional direct numerical simulations, as the steady state linear wave and second-order

mean flow are here computed at once. The analysis is still limited to the weak streaming

limit, as it is based on a straightforward asymptotic expansion that cannot account for

nonlinearities in the wave and streaming flow. This precludes one from exploring close-

to-resonance conditions or considering low-viscosity fluids for which strong streaming is

expected to occur. However, the present results constitute the starting point in the de-
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velopment of rigorous multiple timescale analyses, through which a system of amplitude

equations, coupling the wave dynamics to the mean flow evolution, could be derived in the

same spirit of Ref. 83, hence enabling us to revisit prior inviscid analyses [38–40] based on

the more realistic viscous modes constructed numerically.

Lastly, it is known that a free-end edge condition at the contact line is experimentally

extremely difficult to reproduce. The flexibility of the numerical tools here proposed would

strongly ease accounting for additional effects, such as surface contamination [49, 51, 84, 85],

contact angle variation [86] or contact line pinning [65–67], thus paving a way for a more

comprehensive investigation of the influence of these sidewall non-idealities on the resulting

steady streaming flow.

Appendix A: Sensitivity analysis to the value of the slip region penetration depth

In §II C, we have introduced the depth-dependent slip-length model (10), which has

already been employed and validated in [64, 65] and which shares close similarities with other

localized slip conditions commonly employed in the modelization of contact line motions (see

for instance [87]).

The model assumes a large value of the slip length ls (z = 0) = lcl ∼ 102 ÷ 104 at the

contact line, e.g. 103, and a small value ls (z = −δ) = lδ ∼ 10−4 ÷ 10−6, e.g. 10−5 at a

distance δ below the contact line. A large value of lcl is necessary to preserve as much as

possible the continuity of vorticity by approaching the contact line from the interface or the

lateral wall [62]. If the contact line is modelled as a free-end edge condition as in the present

study, i.e. ∂η/∂r = 0, then the value of ls should tend to infinity. On the other hand, a

small value of lδ is necessary to reproduce the no-slip condition [63] to recover the lateral

boundary layer, whose presence is a key feature in the generation of the mean Eulerian

streaming flow.

If the values of lcl and lδ are picked within the ranges given above, the numerical solution

does not show significant changes. The law adopted here to describe the transition region is

exponential, as suggested by [63]. Different laws, e.g. a linear decay, could be employed; a

detailed sensitivity analysis of the slip length law has already been performed and reported

in Appendix C of Ref. 65, which showed that the choice of the decaying function is not

crucial as long as the parameter δ is small enough. The fundamental free parameter of the

model (10) is indeed the slip region penetration depth, δ. We have anticipated in §II C that
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Figure 10. Sensitivity analysis of the poloidal Lagrangian mean flow in the vertical plane to

variation of the slip region penetration depth δ adopted in the macroscopic depth-dependent slip-

length model (10). Starting from the container depth, δ = H = 2.168, the extension of the

penetration length is progressively reduced up to the size of the capillary length, lcap = 0.0305.

The computation is performed at Ω/ω1 = 0.67, ε = 0.057 and for ν = 500 mm2 s−1, as in Fig. 4.

The value of lcl and lδ are set, respectively, to 102 and 10−4.
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what mostly matters in choosing the value of this parameter is that δ should be kept small

compared to all the other scales at hand in the problem, i.e. H, R, capillary length 1/
√
Bo,

Stokes boundary layer thickness
√

2/Re or, at most, comparable to the smallest one.

In this Appendix, we provide a systematic sensitivity analysis of the poloidal Lagrangian

mean flow to significant variations of the parameter δ. Starting from the container depth,

δ = H = 2.168, the extension of the penetration length is progressively reduced up to the

size of the capillary length, lcap = 0.0305.

In the first five panels (a)-(e) of Fig. 10, the value of δ is large (≥ 1) and the sidewall behaves

largely as a slip wall. The no-slip condition is exactly enforced at the bottom, but the fluid

layer is too deep for the bottom boundary layer to contribute to the mean flow generation,

i.e. the wave motion decays exponentially before reaching z = −H. In the scenario, the

only boundary layer at play is the one below the free surface, where most of the streaming

flow generation occurs.

For 1 < δ < 0.5 (see panels (f)-(j)), the lateral wall starts to behave as a no-slip wall

below the interface and, as a consequence, we observe an intensification of the near-wall mean

flow. Only starting from δ < 0.5 (panel (h)) we commence retrieving the oblique toroidal

jets sprouting from the contact line region, which becomes progressively more intense by

further decreasing δ to values < 0.2 (panel (i)-(j)). We note that, at least in this particular

case, it is only when approaching the value of the capillary length, i.e. δ ≈ lcap (see panel

(k)-(l)) that the structure of the poloidal Lagrangian mean flow is both qualitatively and

quantitatively similar to that reported experimentally by [1].

Appendix B: Comparison with other prior works

In the present manuscript, we have used the results by [1] (B17) as the main reference

for comparison with experiments. Except for this seminal work, the sloshing literature

lacks comprehensive investigations of the mean flow associated with the orbital motion. In

addition, as mentioned by B17, the strong dependence of the poloidal flow with the governing

parameters makes difficult direct comparisons with prior works [88].

In this appendix, we attempt to apply our viscous weakly nonlinear analysis to the cases

considered by [10]. Employing the so-called Marker-and-Cell method, they numerically

resolved the three-dimensional sloshing problem and computed the wave dynamics as well

as the associated mean flow. Their numerical results, which were shown qualitatively similar
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Figure 11. (a) Poloidal Lagrangian mean flow, displayed in the vertical plane numerically, computed

by [10] for a container of radius R = 43.5 mm filled to a depth h = 20 mm with a mixture of water

and ethylene glycol liquid of kinematic viscosity ν = 16 mm2 s−1. The forcing amplitude is also

A = 20 mm, corresponding to a large value of ε, i.e. ε = 0.46. The period of the forcing is 1 s,

corresponding to Ω/ω1 = 0.37. The scale of the arrows is indicated in the plot. (b) Same as in

(a) but according to our weakly nonlinear analysis. We note that the predicted maximal velocity

magnitude is around 0.2 cm/s, which is around one order of magnitude larger than that of [10].

(c)-(d) Same as in (a)-(b) but for ν = 10 mm2 s−1.
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to those extracted through flow visualisation by homemade experiments, will be used in the

following for comparison with our numerical analysis.

Panels (a) and (c) of Fig. 11 show the poloidal Lagrangian mean flow calculated by [10]

for a container of radius R = 43.5 mm, filled to a depth h = 20 mm with a mixture of water

and ethylene glycol liquid of kinematic viscosity ν = 16 mm2 s−1, and orbitally forced with

a driving period of 1 s and a forcing amplitude A = 20 mm, which correspond, respectively,

to Ω/ω1 = 0.37 and ε = A/R = 0.46. Specifically, panel (a) is for a fluid with kinematic

viscosity ν = 16 mm2 s−1 and panel (b) for ν = 10 mm2 s−1. Panels (b) and (d) show

the corresponding fields predicted according to our analysis. Qualitatively speaking the

agreement is fairly good. Both numerical solutions display the same recirculation regions,

i.e. a large vortex that invades the whole cell and a smaller counter-rotating vortex flattened

to the bottom wall.

Nevertheless, from the quantitative point of view the two numerical solutions differ by

approximately one order of magnitude, i.e. the magnitude of the arrows reported in panels

(b) and (d) is around ten times larger than that of panels (a) and (c). Several explanations

are possible: (i) as [10] did not report the fluid properties of the mixture employed in

the analysis (except the kinematic viscosity), we have here used the values of water, i.e.

ρ = 1000 kg m−3 and γ = 72.5×10−3 N m−1; (ii) although the system is driven at a frequency

far from resonance at Ω/ω1 = 0.37, the amplitude of the forcing is notably large, i.e. ε = 0.46,

and could therefore violate the validity of the asymptotic analysis; (iii) the fluid viscosity is

here five times smaller than the lowest one used in B17, who have cautiously pointed out

that the weak streaming assumption is not fully satisfied at ν = 50 mm2 s−1. In this scenario,

nonlinearities in the streaming flow, overlooked by the present weakly nonlinear analysis,

start perhaps to become important and saturate the mean flow at a lower amplitude, whose

value can be instead captured by fully nonlinear direct numerical simulations.
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