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Introduction

Sloshing, i.e., the oscillations of a free liquid surface in partially filled containers, is an im-
portant issue in mechanical and aerospace engineering as well as in daily life. For instance,
casually shaking a glass of water or a cup of coffee may lead to unpleasant liquid spilling
(Mayer and Krechetnikov, 2012) (see figure II.1(a)). Closer to engineering, the total weight of
launch vehicles and road or ship tankers is constituted in a large percentage by the liquids
transported and by fuel. As the sloshing frequencies might be close to the control system
frequencies, possible resonant sloshing dynamics can induce significant displacements of the
vehicle’s center of mass, thus endangering its dynamical stability (Ibrahim, 2005), with critical
consequences on the transport safety and vehicle’s performances (see figure II.1(b).

In some other applications however, enhancement of sloshing waves is seen as beneficial
(see figure II.1(c)): in biology for example, cellular growth takes place in nutritive media placed
into bioreactors (McDaniel and Bailey, 1969; Wurm, 2004). These containers are agitated so as
to mix the liquid, prevent sedimentation and enhance gas transfer, which provides suitable
oxygenation to the growing cell population (Klöckner and Büchs, 2012).

Therefore, a proper predictive understanding and modelling of the sloshing hydrodynamics
at stake is essential in the design process of liquid tanks, so as to implement active control
systems of vehicles and ensure efficient mixing processes.

For moderately large-size containers, sloshing is classically modelled by determining the os-
cillation modes compatible with a given tank shape using potential flow theory supplemented
by viscous dissipation coming from bulk potential flow and Stokes boundary layers along walls
(Faltinsen and Timokha, 2009). More precisely, gravity waves are restricted into modes with
a discrete set of wavenumbers, owing to the action of the container walls. The values of the
associated natural frequencies depend on the geometrical and fluid parameters through the
well-known dispersion relation for capillary-gravity waves (Lamb 1932),

!2
mn = g kmn

°
1+∞k2

mn/Ωg
¢

tanh(kmnh), (3.72)

where g is the gravitational acceleration, h is the depth of the liquid layer, Ω and ∞ are the
liquid’s density and surface tension, while kmn is a wavenumber.

Since analytical solutions are limited to regular geometric tank shapes, the case of sloshing
in partially filled cylindrical reservoirs has represented over the last 60 years one of the archety-
pal sloshing systems (Abramson, 1966). In this specific configuration, the wavenumbers
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Figure II.1 – (a) Example of daily-life liquid spilling. (b) Top, sloshing experiments in large-
scale tanks for LNG (liquefied natural gas) carrier (Pastoor et al., 2005). Bottom, a sloshing
test carried out by ESA (European Space Agency) to test the response of a launcher’s liquid
propellants to the violence of take-off, so as to better understand the forces involved and
enhance future launcher performances. (c) Left, stirred tank in operation: gas and chemicals
are injected at the bottom, while the agitation is ensured by the propeller, which also breaks
the largest bubbles. Gas exchange occurs at the interface of the bubbles. Right, orbital-shaken
bioreactor: the motion is imposed at the whole vessel, and transmitted to the liquid by the
walls, with the gas exchange occurring at the free surface (modified figure from Reclari (2013)).
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kmn are given by the nth-roots of the first derivative of the mth-order Bessel function satis-
fying J 0m (Rkmn), with R the container’s radius and the indices (m,n) denoting, respectively,
the number of nodal circles and nodal diameters of the associated eigenmode. The lowest
or first system’s natural frequency has typically (m,n) = (1,1) and it is therefore denoted by!11.

Among all the possible forcing conditions and container trajectories, orbital shaking is
particularly interesting, despite its apparent simplicity. Previous experimental studies have
carefully described the close-to-resonance dynamics for the two limiting cases, namely circular
and purely longitudinal shaking (see figure II.2), casting light on a rich variety of wave regimes,
i.e. planar waves, irregular motion or swirling waves, symmetry-breaking, etc., attracting
interest to dynamicists over the last decades (Hutton, 1963; Miles, 1984c,d; Ockendon and
Ockendon, 1973).
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Figure II.2 – Schematic illustration of possible operating parameters of the shaking config-
urations. Note that the container does not rotate around its own axis, but rather keeps its
orientation fixed. The orbit aspect ratio is defined as Æ= ay /ax , and it is Æ 6= 0 for a generic el-
liptic orbit. The two limiting cases correspond toÆ= 1, rotary shaking, andÆ= 0, longitudinal
shaking. The external driving is harmonic with angular frequency≠= 2º/T .

For circular orbits, the system responds with a swirling wave always co-directed with the
container motion. This well-defined hydrodynamics, often simply modelled by a one-degree-
of-freedom Duffing oscillator (Ockendon and Ockendon, 1973), is advantageously exploited
in the design of bioreactors for bacterial and cellular cultures (McDaniel and Bailey, 1969;
Wurm, 2004), where circular shaking is used as a method to gently mix the liquid content of a
container by its displacement at fixed container orientation along a circular trajectory and
at a constant angular velocity. Particularly, it constitutes an alternative to stirred tanks (see
figure II.1(c)), where the liquid agitation results from a rotating impeller or the rotation of a
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Sub-Harmonic Harmonic Super-Harmonic
!/≠ 1/2 1 2
! ≠/2 ≠ 2≠
≠/! 2 1 1/2

Table II.1 – Definition of fundamental sub-harmonic, harmonic and super-harmonic res-
onances based on the relation between driving frequency, ≠ = 2º/T , and wave oscillation
frequency, !. The case of sub-harmonic wave responses will be tackled in Part III in the
context of the parametric Faraday instability.

magnetic rod. In these cultivation protocols, cells are in suspension in the extracellular liquid
medium, which serves as buffer for consumables from which they feed and for their secretions.
The motion of the liquid prevents sedimentation and homogenizes the concentration of
dissolved oxygen and nutrients and of secreted proteins and carbon dioxide. Thanks to the
possible gas exchanges at the free surface, oxygen supply from the container bottom can
possibly be circumvented, avoiding the formation of bubbles and thereby the damages that
their collapse can exert on cells (Handa-Corrigan et al., 1989; Kretzmer and Schügerl, 1991;
Papoutsakis, 1991), sparking interest in the development of large-scale, in the hectoliter range,
orbital-shaken bioreactors (Jesus et al., 2004; Liu and Hong, 2001; Muller et al., 2007). It is
therefore not a surprise if a significant body of research on the gas exchange and mixing in
these devices has emerged over the last two decades (Büchs, 2001; Büchs et al., 2000a,b; Maier
et al., 2004; Micheletti et al., 2006; Muller et al., 2005; Tan et al., 2011; Tissot et al., 2010, 2011;
Zhang et al., 2009).

Since the shear stresses and, therefore, the mixing are proportional to the velocity gradients
in the liquid phase, most of the gas exchange phenomena listed above are directly linked to the
liquid motion, with the optimal working conditions essentially dictated by the wave pattern
(Reclari, 2013). For these reasons, at a more fundamental level, the hydrodynamics of these
orbital shaking devices has received recent attention, from both experimental (Bouvard et al.,
2017; Moisy et al., 2018; Reclari et al., 2014) and theoretical (Horstmann et al., 2020; Reclari
et al., 2014) perspectives, predominantly using linear potential flow models. These models
are often complemented with effective viscous damping rates to incorporate the energy
dissipation responsible for the phase-shifts between wave and shaker, which was also seen
to be sometimes responsible for damping-induced symmetry-breaking linear mechanisms
resulting in linear spiral wave patterns (Horstmann et al., 2021, 2020). Previous studies,
reviewed for instance in Ibrahim (2005) or Faltinsen and Timokha (2009), make mostly use of
classical existing theories for general linear and weakly nonlinear sloshing dynamics in the
vicinity of the fundamental harmonic resonance, i.e. when the system is harmonically driven
at a frequency close to the lowest natural frequency, !11.

However, the seminal work of Reclari (2013) cast light on the importance of super-harmonic
resonances occurring for an excitation frequency far below !11, which may possibly manifest
with large amplitude responses and wave breaking, hence potentially raising an issue for the
robustness of bioreactors if not accounted for. Among these super-harmonics, the double-
crest (DC) dynamics (as defined by Reclari (2013)) is particularly relevant, as it displays a
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Figure II.3 – Non-dimensional wave amplitude (re-scaled with the container’s radius R) be-
tween the apparition of super-harmonic double-crested waves (at ≠ º !21/2, vertical red
dashed line) and the first system’s natural frequency (!11) (Reclari, 2013). ds is the orbit of the
container’s trajectory and represents the dimensional forcing amplitude. The black solid lines
correspond to the theoretical predictions given by a linear potential model. The single-crest
(SC) and double-crest (DC) wave shapes, visualized along the wall, i.e. µ 2 [0,2º] with µ the
azimuthal coordinate, are shown in the two insets (modified figure from Reclari (2013)).

notably large amplitude response, that is strongly favoured by the spatial structure of the
external forcing (see figure II.3). In the following we will refer to this resonance as fundamental
super-harmonic. To avoid confusion with the contradictory terminology in literature, in
table II.1 we define what we mean for fundamental sub-harmonic, harmonic and super-
harmonic resonances.

In order to refine the linear potential model and, specifically, to predict the occurrence
of the super-harmonic wave dynamics observed experimentally (we remark that by super-
harmonic, we mean here a wave of a certain wave frequency ! emerging from an excitation
at ≠ = !/2, with ≠ the driving angular frequency), Reclari (2013) and Reclari et al. (2014)
proposed an inviscid weakly nonlinear analysis based on a second order straightforward
asymptotic expansion procedure, which was shown to be capable of capturing the emergence
of the observed resonance. However, their analysis, as typical of straightforward asymptotic
expansions, suffers from secular terms (Castaing, 2005; Nayfeh, 2008a) and, therefore, it still
fails in describing the correct nonlinear behaviour close to both harmonic and super-harmonic
resonances.

With regards to the experiments of Reclari (2013) and Reclari et al. (2014), Timokha and
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Raynovskyy (2017) and Raynovskyy and Timokha (2018a,b) have applied the Narimanov-
Moiseev multimodal sloshing theory (Dodge et al., 1965; Faltinsen, 1974; Lukovsky, 1990;
Moiseev, 1958; Narimanov, 1957; Narimanov et al., 1977). The theory is capable of accurately
describing the nonlinear wave dynamics near the fundamental harmonic resonance when no
secondary resonances occur (Faltinsen et al., 2016, 2005). Despite the fact that the experiments
performed by Reclari (2013) and Reclari et al. (2014) were made for nondimensional fluid
depths H = h/R = 1.04 and 1, which lie slightly beyond the applicability threshold of the
multimodal theory (Hth should be & 1.05 as stated by Raynovskyy and Timokha (2020)) and
imposed by the occurrence of secondary resonances, the authors found a quantitative good
agreement with the experimental observations associated with the hardening-spring type
single-crest swirling.

In the spirit of the aforementioned multimodal theory but with regards to square-base basins,
the resonant amplification of higher order modes for forcing frequency in the vicinity of the
primary resonance (secondary or internal resonances) was investigated by Faltinsen et al.
(2005), who formalized a so-called adaptive asymptotic modal approach capable to improve
the agreements with earlier experiments. A thorough discussion on this regard is also outlined
in chapters 8 and 9 of Faltinsen and Timokha (2009), where the importance of the ratio of
tank liquid depth to tank width on the occurrence of the internal resonance phenomenon
is carefully discussed. Generally speaking, secondary resonance is a broader concept, and
it may occur even far from the primary resonance zone, as in the case of the double-crest
swirling observed in Reclari et al. (2014). To our knowledge, the adaptive modal approach was
never extended to super-harmonic system responses of orbital-shaken circular cylindrical
containers far from the primary resonance.

For these reasons, it appears that a quantitatively accurate model for the prediction of the
super-harmonic double-crest (DC) dynamics observed during the thorough experimental
campaign carried out by Reclari (2013) and Reclari et al. (2014) has not been provided yet.
Chapter 4 is precisely dedicated to the development of a weakly nonlinear analysis based on
the multiple timescale method, which will be seen to successfully capture nonlinear effects for
the main additive harmonic resonances as well as the more subtle additive and multiplicative
resonance governing the super-harmonic double-crest swirling. Amplitude equations are
rigorously derived in an inviscid framework, which once amended with an ad-hoc damping
term as the only tuning parameter, well match the experimental findings of Reclari (2013) and
Reclari et al. (2014). Lastly, the obtained amplitude equations for harmonic single–crest and
super-harmonic double–crest waves are found to be compatible with the two well-known
one-degree-of-freedom (1dof) systems, the Duffing (already introduced in Chapter 1) and the
Helmholtz-Duffing oscillators, respectively.

The study of the double-crest (DC) super-harmonic resonance is extended to longitudinal
shaking in Chapter 5. The latter forcing condition has been analytically and experimentally
studied for decades (Abramson, 1966; Chu, 1968; Hutton, 1963) and it is of interest from the per-
spective of hydrodynamic instabilities due to the occurrence of hysteretic symmetry-breaking
conditions (Miles, 1984a,d). With regards to circular cylindrical containers, particularly rel-
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Figure II.4 – (a) Time evolution of the wave amplitude at a probed location in a circular
container of radius R = 78mm filled with water to a non-dimensional depth h/R º 1.5 and
undergoing a longitudinal motion of non-dimensional amplitude ax /R = 0.0033 and driving
frequency ≠/!11 = 0.98, with !11 the lowest system’s natural frequency. The time series
shows a wave envelope modulation occurring on a much larger time scale than the forcing
period T = 2º/≠. The absence of a steady wave amplitude regime is a clear sign of irregular
motion. (b) Images from Royon-Lebeaud et al. (2007) of a swirling wave in a circular cylinder
of radius R = 150mm filled to a depth h/R º 1.2 and longitudinally forced with ax /R = 0.023
and ≠/!11 º 1.02. Views are in the direction normal to the tank motion. The ten images
represent slightly more than one wave period. (c) Theoretical (solid lines, from Faltinsen et al.
(2016)) and experimental (circles, from Royon-Lebeaud et al. (2007)) estimates of bounds,
in the forcing parameter space, (≠/!11, ax /R), between the frequency ranges where planar,
irregular and swirling waves occur for close-to-resonance longitudinal forcing conditions, i.e.
≠/!11 º 1.

evant are the experimental studies by Abramson et al. (1966), Royon-Lebeaud et al. (2007)
and Hopfinger and Baumbach (2009), who detected the stability bounds between harmonic
planar, swirling and irregular waves and whose estimates were later used by Faltinsen et al.
(2016) to validate their theoretical analysis (see figure II.4). However, these works were mostly
focused on the investigation of system responses in the neighbourhood of harmonic reso-
nances, whereas, with the exception of Reclari (2013); Reclari et al. (2014) in the context of
circular sloshing, the literature seems to lack comprehensive experimental and theoretical
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studies dealing with the fundamental secondary super-harmonic resonances (discussed in
Chapter 4) under longitudinal or, more generally, elliptical container excitation.

In this Chapter, we take a first step in this direction by extending to longitudinal planar forcing
the analysis formalized in Chapter 4 for circular container motions. In the spirit of the multiple
timescale method, we develop a weakly nonlinear (WNL) model leading to a system of two
amplitude equations, whose prediction anticipates that a planar wave symmetry-breaking via
stable swirling may also occur under super-harmonic excitation. This finding is confirmed by
our experimental observations, which indeed identify three possible super-harmonic regimes,
i.e. (i) stable planar DC waves, (ii) irregular motion and (iii) stable swirling DC waves, whose
corresponding stability boundaries in the forcing frequency-amplitude plane quantitatively
match the present theoretical estimates.

Chapter 5 ends with a brief demonstration of how a straightforward extension of the present
analysis to a generic container’s elliptic orbit can be readily obtained without any further
calculation. This paves the way for the analysis and experimental investigation of the next
Chapter, which has been stimulated by the surprising fact that no experimental studies de-
voted to the more generic case of elliptic container orbits have been reported so far in the
sloshing literature. Existing theoretical analyses of this forcing condition brought out interest-
ing features of the resonant liquid response that depend on the orbit’s ellipticity. In particular,
the inviscid theory of Faltinsen et al. (2016) suggested the counter-intuitive existence, under
resonant elliptic forcing, of stable swirling waves that propagate in the direction opposite to
the forcing direction. Moreover, the theory anticipated that such counter-waves may exist
even for quasi-circular orbits and travel with a smaller amplitude than co-directed waves. This,
if confirmed, would further enrich the variety of observable dynamical sloshing regimes.

Therefore, Chapter 6 aims at providing a joint experimental and theoretical characteriza-
tion of the free liquid surface response for a generic, elliptic periodic container trajectory, so
as to bridge the gap between the two diametrically opposed shaking conditions previously
discussed. Specifically, with the main focus here on harmonic resonances, we intend to exper-
imentally identify the range of external control parameters, i.e. driving frequency, amplitude
and orbit aspect ratio, for which stable counter-directed swirling waves occur. Our findings
provide the first strong evidence of the existence of a frequency range where stable swirling
can be either co- or counter-directed with respect to the container’s direction of motion. Lastly,
these results are successfully rationalized and predicted by the inviscid asymptotic model
developed in Chapter 5, amended with heuristic damping by analogy with Chapter 4.
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