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Introduction

In Part II, we have tackled several aspects of sloshing, an archetypal resonator system in fluid
mechanics which sometimes represents a critical issue in mechanical engineering and daily
life. It is therefore crucial to understand its associated damping. Indeed, the latter plays a
fundamental role in the mitigation of the wave amplitude response in resonant conditions.

We have mentioned how originally the eigenfrequencies of standing capillary-gravity waves
in closed basins were derived in the potential flow limit (Lamb, 1993), while the linear viscous
dissipation at the free surface, at the solid walls and in the bulk for low-viscosity fluids was
typically accounted for by a boundary layer approximation (Case and Parkinson, 1957; Miles,
1967; Ursell, 1952). This classic theoretical approach, which has been used in Part II, is
built on the simplifying assumption that the free liquid surface, n, intersects the lateral wall
orthogonally and the contact line can freely slip at a velocity n/dt (~ U) and with a constant
zero slope,

on i

an =0 free-end edge condition,
where d/0n is the spatial derivative in the direction normal to the lateral wall. Chapters 4, 5 and
6, have proven these hypotheses reasonable for the modelling of gravity-dominated waves in
moderately large-size containers, although some mismatch between theory and experiments
is still present. Such a mismatch was partially attributed to additional dissipations sources
acting at the moving contact line, whose dynamics is the central topic of this Part IV.

The classical assumption of a free-end edge condition has been relaxed in Part III, where two
other scenarios have been studied within the framework of the Faraday instability in small-size
partially filled containers. In Chapter 7, we have considered a diametrically opposed boundary
condition, namely a pinned-end edge, according to which the contact line is fixed,

on : iy

T =0 pinned-end edge condition,
while the slope, /0, is let free to vary (Benjamin and Scott, 1979; Graham-Eagle, 1983). In
this case, theoretical predictions have provided an estimation of the sub-harmonic Faraday
threshold in good agreement with experimental measurements. Indeed, with the contact
line being fixed, the system’s dissipation can be estimated accurately, since no extra and
undetermined dissipation is generated by the contact line.

In Chapter 8, the instability onset of Faraday waves in Hele-Shaw cells and with a moving
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Partial Wetting in Uni-Directional Flows
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Figure IV.1 — (a) Advancing, 8,, and receding, 6,, contact angles in a droplet sliding down
with velocity U over a dry substrate (partial wetting). (d) Contact angles in an expanding
and contracting liquid droplet. Both (a) and (d) are examples of uni-directional flows. The
dynamic contact angle is seen experimentally to depend on the capillary number, Ca = uU/y,
as reported by (b) Snoeijer and Andreotti (2013) and (c) Rio et al. (2005). The dependence
of the contact angle, 6, on the capillary number, Ca, is modelled in the literature by the (e)
de Gennes (Gennes, 1985) and (f) Cox-Voinov (Cox, 1986; Voinov, 1976) models. (g) Contact
angle dynamics in a vertically vibrating droplet and in (j) sloshing waves (snapshots over a
period) (Viola, 2016). For these oscillatory flows, experiments by (h) Xia and Steen (2018)
and (1) Cocciaro et al. (1993) suggest as suitable phenomenological contact angle laws the (i)
nonlinear Dussan model (Dussan, 1979; Jiang et al., 2004), sometimes simply approximated
by the (m) Hocking linear law (Hocking, 1987) supplemented with hysteresis.
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contact line has been estimated by introducing, in the same spirit of Li et al. (2019), an
intermediate boundary condition that assumes a linear relation between the contact line
speed and slope, 0n/0n o< dn/0dt (Hocking, 1987), with a proportionality constant, sometimes
referred to as mobility parameter M (Xia and Steen, 2018), that in our study has been kept
constant in time. We note that, according to the linear relation,

0 0
on _,,0n

mixed condition,
on ot

the limiting values M — 0 and M — oo would correspond, respectively, to free-end and pinned-
end edge contact line conditions. The agreement with experiments was found to be fairly
good, although this proportionality constant was used as a fitting parameter.

With these simple contact line models, the damping of the system is assumed to have linear
origins. Nevertheless, these assumptions altogether, by overlooking the actual nonlinear con-
tact line dynamics, have led to a considerable underestimation of the actual overall dissipation
in most of the small-size lab-scale experiments (Benjamin and Ursell, 1954; Henderson and
Miles, 1990), for which the complexity of the region in the neighbourhood of the moving con-
tact line, where molecular, boundary layer and macroscopic scales are intrinsically connected,
is of extreme importance.

In order to understand and quantify better, at least from a macroscopic perspective, this extra
dissipation, it is necessary to look more carefully at the dynamics of the oscillating contact line
and at its wetting conditions, a long-standing problem in fluid mechanics that dates back to
Navier Navier (1823) (see also Davis (1974); Eggers (2005); Eral et al. (2013); Huh and Scriven
(1971); Keulegan (1959); Lauga et al. (2007); Miles (1990); Ting and Perlin (1995)).

When a liquid meniscus flows over a dry solid substrate, there is a triple-phase interface (air-
liquid-solid), which experiences a complex nonlinear dynamics. For instance, let us consider
two scenarios of uni-directional flows: a droplet sliding down with velocity U on an inclined
dry plate in partial wetting conditions (see figure IV.1(a)); an expanding or contracting (at
velocity U) liquid droplet (see figure IV.1(d)). Experimental observations (Dussan, 1979; Grand
et al.,, 2005; Rio et al., 2005) have shown that the dynamic advancing, 8,, and receding, 9,
contact angles deviate from their static values depending on the velocity of displacement of
the advancing or receding meniscus. Moreover, there exists a range 6 € [0,,0,] within which
the contact line seems to remain stationary. The existence of such a static range, defined
as contact angle hysteresis, plays a critical role in the nonlinear damping and dynamics of
capillary-gravity waves.

Several models have been suggested to explain the relation between the dynamic contact
angles, 0, and the capillary number defined by the drop velocity, U, i.e. Ca = pU/y, with y
and y, the air-liquid surface tension and dynamic viscosity, respectively. One such model for
these uni-directional flows has been established by Gennes (1985), who extended to partial
wetting conditions the Tanner law, originally derived in total wetting. This law connects the
dynamic contact angles 6 and the static (equilibrium) angle 8 with the capillary number Ca.
More precisely, the force required to draw the liquid is represented by y (cos6; — cos6), while

the viscous force is proportional to pU0~tlog(l,,,.../1,....). Here, I denotes a macroscopic

macro
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characteristic length and / is a microscopic cut-off length, which is necessary to prevent

stress singularity, as pointed out by Snoeijer and Andreotti (2013). For small values of static
) holds true, with

the + signs that distinguish between the advancing and receding motion of the contact line.

and dynamic contact angles, the equation 6 (0> —02) = +6Calog(1,,.../ L.icro

Cox (1986) and Voinov (1976) arrived at a similar but different relation by solving lubri-
cation equations for slightly curved air-liquid interfaces. Like the approach of de Gennes,
their solution is truncated at both molecular and macroscopic scales, giving the law 63 — 63 =
£9Calog (L, /1)

In the study by Grand et al. (2005), it was noted that while certain models accurately depict
the contact line dynamics observed in experiments, they fail to account for wetting hysteresis.
As aresult, when comparing these models to experimental data, the static contact angle 0;
is substituted with the limit static angle 8, for the advancing branch and 8, for the receding
branch. Figure IV.1(e,f) displays the resulting 8 (Ca) dependence for the de Gennes (e) and
Cox-Voinov models (f), both of which incorporate a static hysteresis range A.

For oscillatory flows, the contact angle laws proposed in the literature share the same
qualitative features as those derived for uni-directional flows, such as the de Gennes or the
Cox-Voinov ones, but are described by quantitatively different relations. As this thesis focuses
on oscillatory flows, the bottom part of figure IV.1 gives a brief overview of famous contact
line models which have been used in this context. For instance, the contact angle dynamics
observed for vertical vibrating sessile drops (figure IV.1(g)) or during the relaxation of sloshing
waves (figure IV.1(j)) are seen to obey the nonlinear (cubic) Dussan model, (6 —6 5)3 ~ Ca (see
figure IV.1(h,i)), and are sometimes well approximated by a modified Hocking’s law (supple-
mented with hysteresis, see figure IV.1(1,m)).

Furthermore, the rich dynamics of an oscillatory meniscus shows some interesting features
that the next two Chapters of this thesis aim at reproducing and predicting. Those features are
described in detail in figure IV.2. In a study conducted by Noblin et al. (2004), they investigated
the behaviour of a water droplet on a solid surface with a finite contact angle hysteresis under
vertical vibration (see figure IV.1(g)). The results showed two distinct types of oscillations.
At low forcing amplitude, the contact line remains pinned (see figure IV.2(a)) and the drop
displays eigenmodes at different resonance frequencies. At higher amplitudes, the contact line
starts to move, remaining circular but with a radius oscillating at the excitation frequency. This
transition between the two regimes occurs when the variations of the contact angle exceed
the hysteresis range. They also observed a decrease in the resonance frequencies at larger
vibration amplitudes for which the contact line is mobile. These features were attributed to
the hysteresis acting as solid-like friction on the oscillations, leading to a stick-slip regime at
intermediate amplitude (Dollet et al., 2020).

In his seminal works, Cocciaro et al. (1993, 1991) thoroughly characterized the contact angle
dynamics during the natural (free-of-forcing) relaxation phase of the fundamental asymmet-
ric sloshing mode in a small circular cylindrical container. Two different damping regimes
were observed, corresponding to higher and smaller wave amplitude oscillations (see fig-
ure IV.2(b,c)). First, the contact line slides over the solid substrate experiencing progressive
stick-slip transitions under the effect of the dynamic wall friction. In this phase, the damping
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Figure IV.2 — (a) Transition between stick and stick-slip motions in a water sessile drop de-
posited on a vertically vibrating substrate characterized by a finite contact angle hysteresis
(A= 10-15 degrees) (Noblin et al., 2004). Lower curves are contact angle variations versus
time, the dashed line represents 6. Higher curves are the contact line position around the
starting position before vibrations. The six curves for different non-dimensional acceleration
amplitudes f/g are joined together in the same plot for comparison. The driving frequency is
1/T =9Hz. (b) Experimental contact angle dependence on the capillary number as measured
by Cocciaro et al. (1993) during the natural relaxation dynamics of water oscillations in a
cylindrical container initially perturbed using a loudspeaker, so as to induce the liquid motion.
(c) Associated damping rate versus the amplitude of the angle measured at the container axis.
The vertical dashed line indicates the value for which the contact line irreversibly pins.

increases considerably as the wave amplitude decreases, until it reaches a maximum value,
after which it starts to decrease, and the small amplitude regime is established. A finite time
of arrest for the contact line is found: the interface irreversibly pins and the following pure
bulk motion is seen to decay exponentially owing to the linear viscous dissipation acting in
the fluid bulk and in the Stokes boundary layers. The natural oscillations frequency initially
matches the value associated with a free-end eigenmode, it increases during the decay, and it
eventually tends to the value associated with a pinned-end eigenmode.

As an alternative to computationally expensive fully nonlinear direct numerical simulations
(see (Amberg, 2022; Ludwicki et al., 2022) among others), different theoretical frameworks,
attempting to rationalize the nonlinear dependence of the damping rate on the oscillation
amplitude, have been recently proposed (Viola et al., 2018; Viola and Gallaire, 2018). These
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works are based on an asymptotic formulation of the full hydrodynamic problem, which is
tackled in the spirit of the weakly nonlinear and multiple timescale approach Stuart (1960),
under precise assumptions and range of validity. The asymptotic analysis is found to be able
to quantitatively predict the nonlinear trend of the damping in the higher amplitudes regime
and the existence of a finite-time of arrest for the contact line, in agreement with experiments
(Cocciaro et al., 1993; Dollet et al., 2020). However, it fails in capturing the transient stick-
slip motion and, most importantly, the transition to the small amplitude regime, when the
interface pins but the fluid bulk keeps oscillating with a smaller amplitude motion following a
purely pinned dynamics.

The purpose of Chapter 9 is to provide a different theoretical approach, which overcomes the
limitations of these asymptotic analyses, thus successfully solving the overall flow dynamics
and enabling us to extract and highlight realistic flow features, yet keeping a low computational
cost. To this end, we consider viscous liquid oscillations in an idealized two-dimensional
container and subjected to an experimentally inspired nonlinear contact line model, to which
the contact line is forced to obey. Using a piecewise time splitting of the nonlinear contact line
law, we formalize a mathematical model based on successive projections between different
sets of linear eigenmodes pertaining to each linear split-piece composing the contact line law.

This procedure allows us to formally account for all the nonlinear features of small-amplitude
capillary-gravity waves induced by a nonlinear contact line law acting at the lateral wall of
a rectangular basin and, in particular, to correctly solve the transition from a contact line
stick-slip (or nearly stick-slip) regime to the pinned (or nearly pinned) one. Indeed, each
projection, corresponding to each stick-slip transition, eventually induces a rapid loss of total
energy in the liquid motion and contributes to its nonlinear damping.

The projection method formalized in Chapter 9 for an idealized two-dimensional flow con-
figuration with triple contact points (rather than lines), is extended in Chapter 10 to describe
the more realistic situation of liquid oscillations in a U-shaped tube, as experimentally inves-
tigated by Dollet et al. (2020). A thorough quantitative comparison with these experiments
shows that the projection method correctly captures the final stick-slip-to-stick transition, as
well as the secondary fluid bulk motion following the arrest of the contact line, overlooked by
previous asymptotic analyses.
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