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Abstract

We investigate the response of the free liquid surface in a partially filled circular cylindrical con-
tainer undergoing a planar elliptic and time-periodic orbit while maintaining fixed its orientation.
For small forcing amplitudes and deep liquid layers, we quantify the effect of the orbit’s aspect
ratio on the surface dynamics in the vicinity of the fluid system’s lowest natural frequency wg. We
provide for the first time experimental evidence of the existence of a frequency range where stable
swirling can be either co- or counter-directed with respect to the container’s direction of motion.
Our findings are then rationalized by an inviscid weakly nonlinear model, amended with heuristic

damping.
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I. INTRODUCTION

The problem of liquid sloshing, i.e. the oscillations of a free liquid surface in partially
filled containers, pertains to many aspects of daily life, ranging from mundane wine tasting
to more pragmatic issues such as liquid spilling [1] and transport safety [2, 3]. Therefore,
a proper predictive understanding and modelling of the sloshing hydrodynamics at stake is
essential in the design process of liquid tanks.

In this regard, the case of orbital sloshing in partially filled circular cylinders represents
an archetypal sloshing system [4]. Previous experimental studies have described its reso-
nance dynamics for circular or purely longitudinal shaking, casting light on a variety of
wave regimes attracting the interest of dynamicists over the last decades [5-8].

For circular orbits, the system responds with a swirling wave co-directed with the con-
tainer motion [9]. This well-defined hydrodynamics, often modelled by a one-degree-of-
freedom Duffing oscillator [6, 10], is advantageously exploited in the design of bioreactors,
where the container is shaken so as to gently mix the liquid, prevent sedimentation and
enhance gas transfer [11]. In the case of longitudinal forcing, the standing wave solution
may undergo a resonant symmetry-breaking, with clock- and anti-clockwise swirling waves
equally probable, or completely lose regularity showing an alternation of planar and swirling
motions [5, 12]. Such a configuration finds a close mechanical analogy in the resonant mo-
tion of a forced spherical pendulum [8], a four degrees-of-freedom system that has been
widely studied in the context of order-to-chaos transitions [7, 13] for its similarities with the
Lorentz’s problem [14].

Surprisingly, however, no experimental studies devoted to the more generic case of elliptic
orbits have been reported so far in the sloshing literature. Yet, existing theoretical analyses
of this forcing condition brought out interesting features of the resonant liquid response
that depend on the orbit’s ellipticity. In particular, the inviscid theory of Faltinsen et al.
(2016) [15] suggests the counter-intuitive existence, under resonant elliptic forcing, of stable
swirling waves that propagate in the direction opposite to the forcing direction. The theory
further predicts that counter-waves may exist even for quasi-circular orbits and travel with
a smaller amplitude than co-directed waves. However, these predictions have not been con-
firmed yet by experimental evidence.

For moderately large-size containers, the use of inviscid hydrodynamic models is well



accepted [3]. Still, in real sloshing problems, waves are always subjected to a non-vanishing
viscous dissipation. Hence, the counter-swirling wave predicted by inviscid theories [15],
being intrinsically disfavored by the forcing direction, is likely more sensitive to damping
than co-swirling solutions, and it is currently unclear whether such a solution can arise in a
lab-experiment.

With this paper, we aim to provide a joint experimental and theoretical characterisa-
tion of the free liquid surface response for a generic, elliptic periodic container trajectory so
as to bridge the gap between the two diametrically opposed shaking conditions previously
discussed. Specifically, we intend to identify the experimental range of external control pa-
rameters, i.e. driving frequency, amplitude and orbit aspect ratio, for which stable counter-
directed swirling waves occur and assess the extent of the forcing regime where asymptotic
inviscid theoretical models break down.

The manuscript is organized as follows. The experimental setup and procedure are de-
scribed in §II. The inviscid asymptotic model, based on a weakly nonlinear multiple time
scales analysis, is described in §III. Section §IV is dedicated to the comparisons between

theory and experiments. Final conclusions are outlined in §V.

II. EXPERIMENTAL SETUP AND PROCEDURE

In our experimental campaign, we used a Plexiglas circular cylindrical container of total
height 50 cm and internal radius R = 0.086m, filled to a depth h = 0.15m with water:
density p = 1000kgm™3, surface tension v = 0.0725Nm™! and dynamic viscosity pu =
0.001kgm~'s™!. The gravity acceleration is denoted by ¢ (see Fig. 1(a)). The container
is fixed on a double-axes linear motion actuator (Aerotech prol65LM + pro225LM), which
imposes along the x and y axes two sinusoidal forcings of angular frequency 2 and amplitudes
@, and @y, that are m/2-phase shifted with respect to each other. The fluid motion is recorded
with a digital camera (Nikon D850) coupled with a Nikon 60mm f/2.8D lens and operated in
slow mode with an acquisition frequency of 120fps. The camera’s optical axis is aligned with
the x-axis. A LED panel is placed behind the container so as to provide a back illumination
for better optical contrast.

In the moving reference frame, any planar elliptic-like shaking can be represented by the

following equations describing the motion acceleration of the container axis parametrized in
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FIG. 1. (a) Experimental setup. Sloshing waves are generated by the container elliptic trajectory,
achieved by imposing along the x and y axes two sinusoidal forcing of driving angular frequency
Q and amplitudes @, and Gy. 0(0,t) denotes the free surface elevation measured at the sidewall,
r = R. (b) Sketch illustrating the extraction from the frame corresponding to time-instant ¢; of
the intensity profiles along the vertical middle axis of the container image (labelled as I;,(0)) and

along the vertical axes located at coordinates FR/2.
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where f, = f =a,Q%/R and f, = af = @,Q%/R are the non-dimensional major- and minor-
axis driving acceleration components, respectively, and = Q/ \/g/_R the non-dimensional
driving angular frequency. The bar symbol refers to the dimensional quantities. Note that
the minor-to-major-axis component ratio, &« = a,/a, = f,/f., has been introduced. A value
0 < a < 1 refers to elliptic orbits, whereas the two limiting cases a = 0 and o = 1 corre-
spond, respectively, to longitudinal and circular shaking conditions.

With this experimental campaign we intend to study the free surface response in the

vicinity of the lowest natural frequency wy = @o/+/g/R = +/ktanh (kh/R) = 1.3547 (with

wavenumber k = 1.8412) [16], for varying orbit’s aspect ratios a and forcing amplitudes @,.
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In particular, we aim at recovering the whole set of stationary wave amplitude solutions, i.e.
co- and counter-swirling waves, and at studying how their stability depends on the forcing
parameters. If co- and counter-swirling waves happen to be coexisting stable solutions for
a certain combination of control parameters, then a co-directed swirling motion will very
likely be naturally favoured by the forcing direction and will therefore spontaneously arise
from the time-harmonic forcing. On the other hand, triggering counter-swirling would re-
quire escaping the basin of attraction of the co-swirling wave solution, which is only possible
by introducing a sufficient flow perturbation. The experimental procedure described in the
following is thus suitably designed so as to reveal steady-state counter-directed waves, when-
ever this dynamics is a stable admissible solution.

In a typical experiment, the amplitude @, € [1,3] mm and ellipticity a € [0.1,0.95]
are fixed, while frequencies are swept up- and downward within the (dimensionless) range
Q/wp € [0.82,1.21]. The increment between two consecutive steps in the frequency sweep is
0.0217. Each frequency step consists of two parts: the container undergoes first a harmonic
elliptic forcing that is in the anti-clockwise direction for 150 oscillation periods and then in
the clockwise direction for another 150 oscillation periods. Two movies are then recorded
at each step so as to monitor the free surface response to both clockwise and anti-clockwise
forcing. Switching the direction of the tank’s trajectory in the second phase of the experi-
mental procedure induces a flow perturbation that is enough to produce a counter-directed
wave if the latter is an admissible stable configuration for the system. For each frequency
step and container direction, the camera is triggered only after 100 cycles so that it only
records the last 50 oscillation periods. Preliminary longer measurements performed for a few
forcing parameters sampled within our experimental range showed that the transient regime
typically lasts less than 100 cycles. Successively, we made sure that every movie recorded af-
ter 100 oscillation periods indeed corresponds to stationary wave amplitude regimes, except

when the system exhibits the irregular dynamics described later in the section.

A. Analysis of the free-surface response

The procedure to analyze the free surface response is extensively described in Marcotte
et al. (2023) [17] and illustrated here in Fig. 1(b). Briefly, we build from each movie an
image I(y) = [I1,(y), I1,(y), ...] where I;,(y) is the intensity profile along the vertical axis
Y (t;) = y on the frame i corresponding to time ¢;, with Y (¢;) = 0 being the vertical middle
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FIG. 2. (a)-(d) Intensity profiles as a function of time along the middle vertical axis I(0) for
ellipticity @ = 0.5, amplitude @, = 1.5mm and frequency (a)-(b) Q/wy ~ 0.95 or (c)-(d) Q/wp ~
1.04. The intensity profiles (b) and (d) are obtained from the binarization of (a) and (c) so as to
filter out the signal of weaker intensity coming from the back contact line whenever the elevation
of the front contact line is minimal. The oscillations of the front contact line are then enclosed into

a top-bottom envelope, plotted in red in panel (d).

axis between the edges of the container image (represented by Y (t;) = R and Y (¢;) = —R).
The resulting image, as illustrated in Fig. 2, displays a periodic dark pattern that represents
the free surface response to the harmonic forcing. The free surface appears as the darkest
feature on each frame so that the intensity profile along a vertical line at a given time t;
represents the vertical extension of the free surface in this direction.

The usefulness of the resulting image I(y) is threefold: (i) it allows the detection of ir-
regular dynamics. This corresponds to the absence of any stable wave amplitude for a given
set of forcing parameters and is easily identified by the time-varying envelope modulating
the free surface oscillations, see Fig. 2(a). (ii) For a regular response, I(0) enables one
to measure the amplitude of the front contact line in the azimuthal direction § = 0. (iii)
The comparison of the profiles along two vertical directions that are mirror-symmetric with
respect to the vertical middle axis, e.g. I(—R/2) and I(R/2), makes it possible to deter-
mine the propagation direction of the wave and to compare it with the container’s motion

direction.



B. Detecting the irregular regime

Fig. 2 displays two intensity profiles as a function of time along the vertical middle
axis (Y = 0) for the same forcing amplitude @, and ellipticity « but for two different
forcing frequencies €2/wy. Those images show that depending on the forcing parameters, the
amplitude of the free surface oscillations can be either irregular, Fig. 2(a)-(b), or stationary,
Fig. 2(c)-(d). In the analysis of the close-to-resonance dynamics, we, therefore, use the

profile 1(0) to identify the irregular regime.

C. Measuring the wave amplitude

The intensity profile I(0) also provides the amplitude 6(60 = 0,t) of the swirling wave
at the front wall of the container, i.e. at the azimuthal coordinate # = 0, such as defined
in Fig. 1(b). Indeed, due to the backlighting, the intensity signal corresponding to the
front contact line appears darker than the one due to the back contact line, so that pieces
of information associated with the latter can be filtered out by a proper thresholding of
profile 7(0). On the resulting binarized image, the maximal and minimal heights of the final
periodic pattern correspond then to the peaks and troughs of the swirling wave at the front
wall along § = 0. The amplitude of the wave (in pixel) is thus experimentally retrieved as
half the difference between the height of the top and of the bottom envelopes enclosing its
oscillations, displayed in Fig. 2(d) as red lines, and converted into millimeters by using a
scale put on the front wall of the container. Note that in this procedure, we neglect the
variation of the pixel size that can occur along the container motion, the camera being fixed.
This is justified by the very small forcing amplitude (1mm < @, < 3mm) with respect to
the distance between the camera and the front wall of the container (1 m). The error related
to the variation of the pixel size is therefore of the order of 0.1%, i.e. negligible compared

to the typical dispersion of our measurements.

D. Identifying the swirling direction

To detect the direction of propagation of the wave, we compare for each movie the in-
tensity profiles along two vertical directions that are mirror-symmetric with respect to the
vertical middle axis of the container. Fig. 3 shows composite images that each consists of the

superposition of I(R/2) and I(—R/2) into a composite RGB image, where grey areas corre-
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FIG. 3. Superposition of the intensity profiles as a function of time along the vertical axis (Y = R/2)
and (Y = —R/2), denoted I(R/2) (in blue) and I(—R/2) (in red) respectively, for a harmonic
forcing of frequency Q/wy ~ 1.04, amplitude @, = 1.5mm, and (a)-(b) ellipticity @ = 0.50 and

(c¢)-(d) @ =0.95. The container moves either in the anti-clockwise direction ((a) and (c)) or in the

clockwise direction ((b) and (d)). See also Supplementary Movies [18].

spond to pixels where I(R/2) and I(—R/2) have the same intensity, while red (resp. blue)
areas correspond to the part of I(—R/2) (resp. I(R/2)) that do not overlap with I(R/2)
(resp. I(—R/2)). Thus, a red (resp. blue) peak preceding a blue (resp. red) peak corre-
sponds to a wave travelling from the left (resp. right) to the right-hand (resp. left-hand) side
of the front wall of the container, i.e. in the anti-clockwise (resp. clockwise) direction. The
propagation direction of the wave can then be determined and compared to the direction
of the container motion. In Fig. 3, the dynamics associated with two different aspect ratio
a = 0.5 and a = 0.95 (quasi-circular orbit) are compared for the same forcing frequency and
amplitude. For each «, the right and left-hand-side signals I(R/2) and I(—R/2) are super-
posed to each other for two motion configurations, namely an anti-clockwise followed by a
clockwise container trajectory. In the case of the anti-clockwise tank’s motion, Fig. 3(a)-(b),
the swirling wave travels in the same direction as the container, but the change of container’s
motion direction induces a flow perturbation sufficient to produce a robust counter-directed
wave, if the latter corresponds to a system’s stable solution. We indeed observe in the case
of @ = 0.5 that the wave, though of smaller amplitude, is still travelling from the left to

the right-hand-side of the container’s front wall despite the reverse of direction in the tank

8



_______

A
P

FIG. 4. Free surface snapshots corresponding to the case of Fig. 3(a)-(b) with o = 0.50. Direc-
tion of the container motion: left, anti-clockwise; right, clockwise (follow the black arrows). The

white arrows indicate the direction of the wave rotation. A visual indication of the different wave

amplitudes is provided by the black double-sided arrows.

trajectory. This appears glaringly in Fig. 4, where the two series of free surface snapshots
show how the wave’s direction of rotation remains unchanged despite the reversal of the con-
tainer’s direction of motion. On the contrary, Fig. 3(c)-(d), the wave switches direction for
the large ellipticity a = 0.95 and is therefore co-directed with the forcing for both container
motion directions. These results provide the first experimental evidence for the existence

of counter-swirling solutions and validate this procedure as suitable to trigger and identify
stable counter-directed waves.



III. INVISCID ASYMPTOTIC MODEL

To assess the extent of the validity of an inviscid hydrodynamic model to predict reso-
nant counter-swirling in a lab-scale experiment, in this section we compare our experimental
results with the theoretical estimates provided by the asymptotic model formalized in Mar-
cotte et al. (2023) [17] and recalled in the following. This weakly nonlinear model has been
extensively compared with Faltinsen et al. (2016) [15] for both purely longitudinal [17] and
circular [10] shaking conditions and it has been shown to provide consistent results.

See Ref. 17 for a discussion on the methodological analogies and differences as well as on
the pros and cons of the present approach versus the Narimanov-Moiseev multimodal theory

employed in Ref. 15.
A. Governing equations

In the potential flow limit, i.e. the flow is assumed inviscid, irrotational and incompress-
ible, the liquid motion is governed by the Laplace equation, subjected to the homogeneous

no-penetration condition at the solid lateral wall, r = R, and bottom z = —h,
AP =0, V&.-n=0, (2)

and by the kinematic and dynamic boundary conditions at the free surface z = n(r,6,t)

2, 3],
an Vd .V
ot '

0 _

P 0. (3a)

%_f + %W V& 41 =1 (fa cos () cos § + f, sin () sin6) , (3b)

made non-dimensional using the characteristic length R and velocity v/gR. ® (r,6, z,t) and
n (r,0,t) denote potential velocity field and free surface elevation, respectively. Note that, as
in Ref. 15 and Ref. 17, surface tension effects have been neglected. By recalling the definition
of the orbit aspect ratio, o = a,/a, = f,/ fz, so that f, = f and f, = af, equation (3b) can

be conveniently rewritten as

od 1 - -
0 190V = L (0,00 a0, 0000) 4o ()

with c.c. denoting the complex conjugate and with o, = (14+«) /2 and a, = (1 —«) /2

two auxiliary orbit parameter.
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B. Multiple time-scales weakly nonlinear analysis

The weakly nonlinear multiple timescale analysis formalized in §4 of Marcotte et al.

(2023) [17] is based on the following asymptotic expansion for the flow quantities,
q (T7 97 Z, t) = {q)v U}T =qo t+ €qq + 62(]2 + 63(313 +0 (€4> ) (5)

and on the assumption of a small forcing amplitude of order f = €3F, which is justified by
the fact that close to the resonance €2 ~ wy, even a small forcing will induce a large system
response. We then allow for a small frequency detuning with respect to the first system’s
natural frequency, wp, such that Q = wy+ A, with A = €2/, € a small parameter < 1 and the
new auxiliary parameters F' and A assumed of order O (1). Note that the e"-order solution,
qo represents the rest state, for which ®( and 7y are simply zero.

Given the azimuthal periodicity of the forcing term on the right-hand-side of (4), i.e.
m = £1 (with m a so-called azimuthal wavenumber), we postulate a leading order solution

as the sum of two counter-propagating travelling waves
ai (1,0, 2,t) = Ay (Ty) @ (r, 2) @09 1 B (Ty) §P' (1, 2) €09 e (6)

with c.c. denoting the complex conjugate. As typical of multiple timescale analyses [19, 20,
the complex amplitudes A; and By, functions of the slow time scale T, = €2t and still unde-
termined at this stage of the expansion, describe the slow time amplitude modulation of the
two oscillating waves and must be determined at a higher order of the asymptotic expansion.

The natural frequency wy and structure Qfl (and éﬁg ') assume the meaning of eigenvalue
and associated eigenmode of the leading order linearized sloshing operator, whose matrix
compact form can be written as (iwoBB — Ap=+1) 61{11’81 = 0 (see Refs. 21, 10 and 17 for the
expression of B and A,,). As in Ref. 10, those matrices are numerically discretized in space
by means of a Gauss-Lobatto-Chebyshev pseudo-spectral collocation method with a two-
dimensional mapping implemented in Matlab, which is analogous to the method described
in Refs. 21 and 22.

By pursuing the expansion to the second order in €, one obtains a linear system forced
by second-order non-linear terms produced by combinations of the two leading order waves
through, e.g., V®; - V&, /2 in the dynamic condition and V&, - Vn; in the kinematic equa-

tion. These forcing terms, F, , are proportional to A% and B? (second harmonics), to |A,|?
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and |B;|? (steady and axisymmetric mean flow corrections) and to A;B; and A;B; (cross-

quadratic interactions), and therefore they call for a second-order solution in the form

Qo = ‘A1|2q1241A1 4 ‘Bl|2 B1B T <A2 A1 A 12(0.101‘, 0) + B2 B1B1612(w0t+9) + C.C.) (7)
(AlB quBl i2wqt + A BlAAlBl —i26 + C.C.> )
None of the associated forcing terms being resonant, each spatial structure, q’;’ (r,z) can be

computed numerically as described in Ref. 10 by simply inverting the corresponding linear

operator, e.g.

~AA A

G = (— Ao F @ = (2woB — Ag) T Fy (8)
~ A1B ~1 ;A8

q?lBl o (12(,4.]0 - Ao) 21 1’ qz;lBl — (-A,Q) 1.7:21 1_

The resulting structures are shown in Fig. 5 in terms of free surface deformations.

We now move forward to the e3-order problem, which is once again a linear problem
forced by combinations of the first (6) and second order (7) solutions, produced by third
order non-linearities through, e.g., (V®; - V&3 + V&, - V&;) /2 in the dynamic condition or
V&, - Vn, + V&, - Vi in the kinematic equation, as well as by the slow time-T5, derivative

of the leading order solution and by the external forcing, which was assumed of order €3:

_ _ aAl /\Al l(wot 9) 8B1
(at[)) Am) qs3 — f'g = 6T2 B 8T2

+|A1)? Ay .7-'|A1 !eilwot=0) | By | 31.7'431‘ B el(wot+0)

By et (9)

P i) || g, 25, FENPP citent+0)

By PAF,
+a, F}-S ei(wotfH)eiATz +a, F.’F3 ei(wotJr@)eiATz

+N.R.T. + c.c.,

with j—'SF = {0,7/2}" and where N.R.T. stands for non-resonating terms. The latter terms
are not strictly relevant for further analysis and can therefore be neglected. The arbitrariness
on amplitudes A; and Bj is fixed by requiring that secular terms do not appear in the
solution to equation (9), where secularity results from all resonant forcing terms in Fs (see
Appendix D of Ref. 10 for its explicit expression), i.e. all terms sharing the same frequency
and wavenumber of qi, e.g. (wp,m = £1), and in effect, all terms explicitly written in (9).
It follows that a compatibility condition must be enforced through the Fredholm alternative

[23], which imposes the amplitudes A = eA;e™ ™ and B = eBje~ ™ to obey the following

12



ﬁfl“lsBl 7A1£f“1|2-,|3||2 , ﬁ;%-B% ﬁé“lBl \ ﬁ1241§1
(a) 2 |(b) (©) 4 1.(d) ()
1/_ 1/\_ 2 .
0
v 0 0 0 1
-2 -1 2 0
1 4 2 4 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
r r r r r

FIG. 5. (a) First-order and (b)-(e) second-order free surface deformations. Top: top-view of the

full surface deformations, reconstructed according to the corresponding azimuthal periodicity and

shown for t =0, i.e. ﬁfl’ B (r) cosm@. Bottom: interface as a function of the radial coordinate only

and at 0 = 0, e.g. ﬁfl’Bl (r). The first-order solution is normalized with the amplitude and phase

B1 .
! is purely real, whereas

of the contact line elevation (at » = 1), such that the free surface 7]141’
the potential velocity field @fl’ B g purely imaginary. Note that, owing to the symmetries of the
problem, the system admits the following invariant transformation: (q,+m,iwg) — (q, —m, iwp),

|A1l? _ ﬁ|231|2

A A1 ~B1 s AT B}
so that 7' = 7", 7, and 7,' = 7, '. In other words, only part of the first and

second-order responses need to be computed explicitly.

normal form

dA
== —INA +io,uf +iv|APA+i€|BJ?A, (10a)
d13 . . . 2 : 2

E:—l)\B—i—laB/Lf—l—llle| B +i{|A]"B, (10b)

where the physical time ¢ = T, /e? has been reintroduced and where forcing amplitude and
detuning parameter are recast in terms of their corresponding physical values, f = €3F and
A =e?A = Q — wp, so as to eliminate the small implicit parameter € [24, 25].

The values of the normal form coefficients i, v and £ as a function of the non-dimensional
fluid depth, H = h/R, are reported in Appendix A. These coefficients, which turn out to
be real-valued quantities due to the absence of dissipation, are computed as scalar products

between the adjoint mode, <€1’141T,61fﬁ>, associated with (61141,61}191), and the third order
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resonant forcing terms:

1
1T =<t j::f >:/ (r/2)n; il rdr, (11a)
0
1 1 ! 1 =4 T -
Tyt B s [ B B e )
0
l 1 1 —A T -
ize —< g F :/ (“fBl My ollf?',ﬁff‘l) rdr, (11c)
0
where )
T =< gt Bg™ /(AIT@A1+¢ ﬁf‘l) rdr. (12)
0

Here (fh ,qu> <af17€11 ), since the inviscid problem is self-adjoint with respect to
the Hermitian scalar product < a,b >= fvﬁ -bdV, with a and b two generic vectors (see
[26] for a thorough discussion and derivation of the adjoint problem).

For the sake of brevity, we do not report the expression of the various forcing terms. As
an example, the full expression of f A 1' is given in Appendix D of Ref. 10. The other

forcing terms are calculated analogously.

C. Phenomenological damping coefficient

Consistently with the inviscid analysis of Faltinsen et al. (2016) [15], the system of
amplitude equations (10a)-(10b) unrealistically predicts counter-waves for a — 1 [15, 27],
while the condition o = 1 gives only co-directed waves [9, 28] (see Appendix C for further
details). This implies that the response curve branching is not a continuous function of «,
which is in contradiction with our experimental evidence reported in the next section. By
analogy with Raynovskyy & Timokha (2020) [27], we, therefore, introduce in Egs. (10a)-
(10b) a heuristic damping coefficient, o, that serves to regularize the limit for o — 1.

The value of ¢ is estimated according to the well-known expression [29-31]

2k? wo [ kcosh? kH Wo k 11+ (1//<;)2 kH

o= —+ - + - + = 5 — . (13)
Re 2Re \ sinh2kH 2Re | sinh2kH 21 — (1/k) sinh 2kH
v _/_/ H/_/ ,

bulk

~~
surf. contamination bottom sidewall

The damping associated with lowest natural frequency, wy = Wo/+/g/R = /k tanh (kH) =
1.3547 (with wavenumber k = 1.8412) [16], in a container of diameter D = 2R = 0.172m
filled to a depth H = h/R = 1.744 with distilled water, i.e. p = 1000kg/m?, = 0.001 kg/ms
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and v = 0.072N/m, for which Re = p\/ﬁ/u = 78952 (Reynolds number), amounts to
o = 0.0055. Typically the viscous damping rate can be interpreted as a slow damping pro-
cess [21, 32], i.e. 1/0 ~ 180, over a faster time scale represented by the wave oscillation, i.e.
1/wo =~ 0.5. When this hypothesis holds, as in the present experimental study, the damping
coefficient is assumed to be small of order €2, such that damping terms as —cA and —o B,
both of order ~ O (¢*) (A, B ~ O (€)), can be phenomenologically added a posteriori to the
final inviscid amplitude equations.

Before moving forward, it is worth noticing that expression (13) englobes different ef-
fects, i.e. viscous dissipation occurring in the Stokes boundary layers (at the solid lateral
and bottom wall), bulk dissipation and possible sources of dissipation associated with free
surface contamination effects [29, 33], but it does not account for any form of dissipation
induced by contact angle dynamics [22, 34-37] or by wave breaking and overturning [27].

Moreover, as pointed out in Appendix A of Ref. 10, prediction (13) is only valid for
small-amplitude capillary-gravity waves, whereas the dissipation rates of forced wave mo-
tions are generally more complex, i.e. it is typically a function of the wave amplitude [27]. A
more rigorous viscous analysis would indeed produce complex eigenfunctions and, therefore,
complex-valued normal form coefficients [25], e.g. ¥ = Re[v| 4+ ilm [v] (same for &), so that
the effective damping will be asymptotically proportional to the square of the wave ampli-
tude through the cubic term in the amplitude equation, i.e. (o + Im[v]|A|? 4+ Im[¢] |B|?)
for amplitude A and (¢ + Im [v] |B|? + Im [¢] |A|?) for amplitude B.

For these reasons, we do not expect the heuristic damping model to provide an accurate
estimation of the actual amplitude-dependent dissipation of the system, crucial for a correct
prediction of the phase-lag between forcing and the system response [38]. However, account-
ing for a damping coefficient ¢ in Eqs. (14a)-(14b) is essential in order to regularize the
weakly nonlinear model prediction as the orbit aspect ratio o approaches 1, i.g. for circular

orbits.

D. Lowest order asymptotic solution

In conclusion, after accounting for the small damping terms —c A and —o B, the lowest

order asymptotic solution governing the close-to-resonance interaction of the two m = +1
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counter-propagating waves is ruled by the following system of complex amplitude equations

dA
= (o riNAtipa,f+ iv|APA+i¢|BJPA, (14a)
dB . . . 2 . 2

=~ (0 +iN) B +ipa,f +iv|BPB +iglAPB. (14b)

The leading order free surface deformation writes

n(r,6,t) = ﬁfh’Bl (r) (Aei(m_g) + Bei(9t+9)) +c.c.. (15)
Given the choice of the mode normalization, for which 17141’31 (r=1) =1, we can express

the dimensionless contact line elevation, § (0,t) /R, at any azimuthal coordinate, e.g. at
0 =0, as
§(0,t) /R = (A+ B) e +c.c. (16)

This quantity will be used in the next section for comparison with the experimental measure-
ments of the stable stationary wave amplitudes. The stationary solutions and their stability

can be computed and predicted from (14a)-(14b) as explained in Appendix B.

IV. COMPARISON WITH EXPERIMENTS

We now compare, in Fig. 6, our measurements to the asymptotic model (14a)-(14b). It
is important to note that the comparison is outlined only in terms of steady-state wave
amplitude. In other words, the experimental transient dynamics following the reverse of the
container’s direction of motion is ignored and, more generally, the specific structure of such
an initial perturbation does not enter the theoretical model, as we only look for large time
stationary solutions of Eqgs. (14a)-(14b) with d/dt = 0.

Fig. 6 shows that at small ellipticity, e.g. « close to 0.10, the amplitude response curve
is similar to that induced by a purely longitudinal forcing [12, 17] except that the planar
wave solution no longer exists, owing to the preferential direction of motion, and that the co-
and counter-rotating waves are no more equally probable, with the counter-wave exhibiting a
slightly lower amplitude. By increasing the value of «, the counter-wave displays a decreasing
amplitude and the range of frequency for which irregular motion occurs shrinks down and
ultimately vanishes [15]. For longitudinal sloshing, irregular motions are the result of an
irregular alternation of planar and swirling dynamics [12]. In the context discussed here,

irregular means that both the co- and counter-swirling solutions are unstable and the system
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exhibits irregular and chaotic patterns switching between co- and, at a small ellipticity,
counter-swirling dynamics alternating transient intervals of nearly-planar motions (see also
Supplementary Movies [18]). As « approaches 1, the admissible frequency range associated
with counter-waves reduces and it is eventually suppressed, whereas the frequency range
associated with co-directed swirling widens and covers all of the frequency range at o = 0.95,
i.e. approaching the limiting case of a circular trajectory (o = 1) [9, 10]. We also observe
a decrease in the wave amplitude at @, = 3mm for o > 0.5, occurring just before the
jump-down frequency (see grey boxes in Fig. 6) and which can be tentatively attributed to
highly nonlinear effects, e.g wave breaking leading to the atomization of the wave crests,
overlooked by the weakly nonlinear model.

The experimental steady-state wave amplitudes are in good quantitative agreement with
the theoretical predictions for all @, and « values explored, hence proving the validity of the
inviscid analysis in our regime of operation. The only major limitation of the asymptotic
analysis is intrinsic to the use of a simple phenomenological damping. As the latter does not
depend on the wave amplitude, it cannot accurately predict the phase lag between forcing
and the system response [38]. This translates into an imprecise estimation of the jump-
down frequency occurring above resonance and of the frequency range associated with the

counter-swirling, which appears slightly overestimated.

V. CONCLUSION

In this work, we have investigated the sloshing dynamics in the vicinity of the first har-
monic resonance for container elliptic orbits. The amplitude-response curves at different
forcing amplitudes were examined versus the orbit’s aspect ratio. We have reported for the
first time experimental evidence of the existence of a frequency range where stable swirling
can be counter-directed with respect to the container’s direction of motion. Particularly,
our experiments demonstrated the existence of a significant frequency range associated with
stable counter-swirling up to surprisingly high orbit aspect ratios.

Our findings have been rationalised by the asymptotic model formalized in Marcotte et
al. (2023) [17] supplemented with a heuristic damping coefficient, which shows how the
close-to-resonant sloshing dynamics for any container’s elliptic-like orbit is well represented
by four degrees of freedom only. This suggests that generalising the resonantly forced

spherical pendulum [7] could provide a suitable mechanical analogy for this entire family of
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FIG. 6. Non-dimensional wave amplitude, Ad = (max; 0 (0,¢) — min; § (0,¢)) /2R versus Q/wy for

different values of @, (rows) and « (columns). Markers: experiments (black for co- and red for

counter-waves). The typical dispersion in the measurements is well represented by the size of

the markers. Curves: stable branches predicted by the present WNL theory (solid for co- and

dashed for counter-waves). Vertical dotted lines indicate frequency values at which experiments

have shown irregular motion. Unstable branches are not displayed for the sake of clarity.
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sloshing dynamics, thus offering additional room in this archetypical low degrees-of-freedom
class of dynamical systems.

We have discussed how the phenomenological damping is sufficient to resolve the singular
limiting behaviour for o — 1, but its simplistic estimation does not allow for an accurate
prediction of the jump-down frequency and of the frequency range associated with counter-
swirling. The adequate embedding of dissipative viscous effects is a long-standing problem
in the hydrodynamics community and still represents a current key challenge in modelling
sloshing dynamics. The use of machine learning algorithms has been recently suggested as
a pursuable approach [39], but their use obviously requires the a priori knowledge of an
experimental dataset for training. Therefore, future perspectives of this work could include
the extension of the weakly nonlinear model to a viscous framework in the same spirit as
Bongarzone et al. (2022) [25]. Although the latter presently hinges on the subtle modelling
of the moving contact line dynamics, such an extension is desirable, as it would enable one
to better quantify the overall system dissipation and also to predict the viscous streaming

experimentally observed in orbitally shaken containers [40].
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APPENDIX A: VALUES OF THE NORMAL FORM COEFFICIENTS

In table I we report the values of the normal form coefficients, p, v and & appearing
in (14a)-(14b) as a function of the non-dimensional fluid depth H = h/R. Note that our
experiments have been performed at a fluid depth H = 1.744.

For completeness we also report the value of the system’s lowest natural frequency wy,
which satisfies the well-known dispersion relation for gravity waves wg = wWy/ \/g/_R =

ktanh (kH) (with & = 1.8412) [16]. We do not report the value of the damping coef-
ficient ¢ as a function of H, since for H > 1 the fluid depth does not affect significantly its
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H=h/R| 1.1 1.2 1.3 14 1.5 1.6 1.7 1.744 1.8 1.9 20

" -0.279 -0.280 -0.281 -0.282 -0.283 -0.283 -0.283 -0.283 -0.284 -0.284 -0.284
v 1.414 1.407 1.406 1.407 1.409 1.410 1.411 1.412 1.412 1.412 1.412
13 -7.487 -7.914 -8.101 -8.211 -8.281 -8.328 -8.359 -8.369 -8.381 -8.395 -8.405

wo 1.334 1.341 1.346 1.349 1.352 1.353 1.354 1.355 1.355 1.356 1.356

TABLE 1. Value of the normal form coefficients appearing in (14a)-(14b) computed at different
non-dimensional fluid depths H = h/R (as reported in table 1 of Marcotte et al. (2023) [17]) and
associated with the lowest natural frequency mode. The subscript SC' was used in Refs. 10 and 17
to indicate the shape of the associated free surface response close to harmonic resonance, initially
denominated single-crest (SC) by Reclari et al. (2014) [9]. Here the subscript SC has been omitted,
but in practice, p, v and & coincide with pg.,, vy, and £, in Ref. 17. For completeness, we also
report the value of the system’s lowest natural frequency wg. The bold values correspond to those

used in the main document for comparison with experiments.

value estimated according to (13).

APPENDIX B: STATIONARY WAVE AMPLITUDE SOLUTIONS AND THEIR
STABILITY

By turning (14a)-(14b) into polar coordinates, i.e. A = |A|e!®4 and B = |Ble'*%, we can

split real and imaginary parts, hence obtaining

d|A
% = —0|A|+ a,ufsin®,, (17a)
d(I)A 3 2
\A\—dt = —MNA| + a,ufcos®s + v|A]° + £|B|| A (17b)
d|B
% = —0|B| + a,yufsin®p, (17c)
dq)B 3 2
|B|F:—A|B|+a3ufcos¢B+V|B| + ¢|A7|B|. (17d)

Let us then decompose amplitudes and phases as the sum of stationary values plus time-
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dependent small perturbations of order ¢ < 1.

|A[ () ag ay (t)

yity= | PO o o] o] O = Yo+ eyi () =yo+ e ($1e +cc), (18)
|B| (t) bo b (t)
Op (t) ®Bo opa (1)

with s = s, +1is, € C an eigenvalue and c.c. denoting the complex conjugate part of the
small linear perturbation. The substitution of (18) in (17a)-(17d) and the linearization
around yj, lead to two problems at order €” and e, respectively. As the nonlinear system of
equations at order € does not admit an analytical solution, we apply a numerical procedure

after rewriting the problem in the form:

(
aA:Uf sin ¢A,0 — 0Qyo,

aif €os G0 — ag (A — vag — €B3) |
appf singpo — ob,

agpfcosdpo— by (A —vbi —&aj).

System (19) is then solved in Matlab function using the built-in function fsolve and pre-
scribing some initial guesses (ig) for (ao , AO, bO ) BO) In practice, we provide in input
the external control parameters, 2, a, = @,/R and «, whereas the associated combination
of stationary amplitudes and phases, (ag, ¢4,0,bo, ¥5o) are computed as outputs.

In the following we study the stability properties of these steady-state amplitude and
phase solutions. Given the ansatz y; (t) = yie® + c.c., at order € the linearized and un-
steady system, describing the evolution of small amplitude perturbations around the sta-

tionary states can be written in a matrix form as

SMyl = Kyla (20)
with matrices M and K reading
(1 000] Ky Kip 0 0]
0a 00 Koy Koy Koy O
M — 0 K- 21 g £S89 , (21)
0010 0 0 K33 Ky
[0 0 0 by | Kun 0 Kyz Ky
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. . T
5’1 = <5L1,¢A,1,b1,¢3,1> and

K1y = —o0, K33 = —o0, (22a)

Ky =a,pufcospag, K= ayufcosdpp, (22b)
Koy = —A+3val + €03, Ku3 = —\+ 3vbg + &ag, (22¢)
Koy = —a,ufsingag, Ky = —a,pufsinggp, (22d)
Koy = 2§agby, K1 = 28agbo, (22e)

We proceed as follows. For each (ag, ¢4.0,b0, $5,), solution of (19), we obtain four eigenval-
ues s. If the real part of at least one of these eigenvalues is positive, then that configuration,

associated with the set of external parameters (£, a,, @), is labelled as unstable.

APPENDIX C: BIFURCATION DIAGRAM FOR a — 1

In this Appendix, we illustrate the role of the phenomenological damping coefficient on
the branching diagram in the limit of a — 1. Indeed, we have observed in our experiments
that for increasing «, the frequency range associated with the existence of a stable counter-
swirling wave progressively shrinks until it eventually disappears (for a, = 3 mm, this
occurs between a = 0.85 and a = 0.95). However, as discussed in §III C, the inviscid model
predicts an extended branch associated with stable counter-directed waves for any a < 1,
e.g. a=0.99 (see Fig. 7(a) of this document), and no branch at all for « exactly equal to 1
(Fig. 7(b)), thus indicating that the response curves branching is not a continuous function
of a. Instead, accounting for a damping coefficient, o, allows for a continuous shrinking
of the counter-directed wave branch, that eventually disappears (Fig. 7(c)), in qualitative

agreement with our experimental observations.
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